abreza commited on
Commit
a0684ce
·
1 Parent(s): c8137b0
Files changed (1) hide show
  1. app.py +22 -38
app.py CHANGED
@@ -12,6 +12,28 @@ import csv
12
  import spaces
13
  # from triton.fb import build_paths
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  def plot_feats(image, lr, hr):
17
  from featup.util import pca, remove_axes
@@ -89,46 +111,8 @@ model_option = gr.Radio(options, value="dino16",
89
  label='Choose a backbone to upsample')
90
 
91
 
92
- def find_cuda_home():
93
- try:
94
- # Define the search string and the directory
95
- search_string = "CUDA"
96
- search_directory = "/usr"
97
-
98
- # Use subprocess to run the grep command
99
- command = ['grep', '-r', search_string, search_directory]
100
- output = subprocess.check_output(command).decode()
101
-
102
- print(output)
103
- for line in output.split('\n'):
104
- if 'Cuda compilation tools' in line:
105
- version = line.split()[-1]
106
- return f"/usr/local/cuda-{version.split('.')[0]}.{version.split('.')[1]}"
107
- except Exception as e:
108
- print(f"Error finding CUDA_HOME: {e}")
109
- return None
110
-
111
-
112
-
113
- print(torch.cuda.is_available())
114
- from torch.utils.cpp_extension import _find_cuda_home
115
- cuda_home = _find_cuda_home()
116
- if cuda_home is None:
117
- raise EnvironmentError("CUDA_HOME could not be found.")
118
-
119
-
120
  @spaces.GPU
121
  def upsample_features(image, model_option):
122
-
123
- os.environ["CUDA_HOME"] = cuda_home
124
- print(os.environ["CUDA_HOME"])
125
- os.environ['PATH'] = '/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin'
126
- os.environ['LD_LIBRARY_PATH'] = '/usr/local/nvidia/lib:/usr/local/nvidia/lib64'
127
-
128
- # Install the required package from GitHub
129
- subprocess.check_call(
130
- ["pip", "install", "git+https://github.com/mhamilton723/FeatUp"])
131
-
132
  from featup.util import norm, unnorm
133
  models = {o: torch.hub.load("mhamilton723/FeatUp", o) for o in options}
134
 
 
12
  import spaces
13
  # from triton.fb import build_paths
14
 
15
+ from torch.utils.cpp_extension import load
16
+
17
+ # Compile and load the CUDA extension
18
+ adaptive_conv_cuda_impl = load(
19
+ name='adaptive_conv_cuda_impl',
20
+ sources=[
21
+ 'featup/adaptive_conv_cuda/adaptive_conv_cuda.cpp',
22
+ 'featup/adaptive_conv_cuda/adaptive_conv_kernel.cu'
23
+ ],
24
+ extra_cflags=['-O3'],
25
+ extra_cuda_cflags=['-O3']
26
+ )
27
+
28
+ # Compile and load the C++ extension
29
+ adaptive_conv_cpp_impl = load(
30
+ name='adaptive_conv_cpp_impl',
31
+ sources=['featup/adaptive_conv_cuda/adaptive_conv.cpp'],
32
+ extra_cflags=['-O3']
33
+ )
34
+
35
+ print(adaptive_conv_cuda_impl, adaptive_conv_cpp_impl)
36
+
37
 
38
  def plot_feats(image, lr, hr):
39
  from featup.util import pca, remove_axes
 
111
  label='Choose a backbone to upsample')
112
 
113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
  @spaces.GPU
115
  def upsample_features(image, model_option):
 
 
 
 
 
 
 
 
 
 
116
  from featup.util import norm, unnorm
117
  models = {o: torch.hub.load("mhamilton723/FeatUp", o) for o in options}
118