abreza commited on
Commit
aaa673b
·
1 Parent(s): f244dfa
Files changed (1) hide show
  1. app.py +25 -21
app.py CHANGED
@@ -2,31 +2,10 @@ import os
2
  import subprocess
3
  import glob
4
 
5
- # Find all CUDA directories that match /usr/local/cuda*
6
- cuda_dirs = glob.glob('/usr/local/cuda*')
7
-
8
- if not cuda_dirs:
9
- raise EnvironmentError('No CUDA installation found. Please install CUDA or set CUDA_HOME manually.')
10
-
11
- # Assume the highest version of CUDA is the one to use
12
- cuda_dirs.sort()
13
- cuda_home = cuda_dirs[-1]
14
-
15
- # Set the CUDA_HOME environment variable
16
- os.environ['CUDA_HOME'] = cuda_home
17
- os.environ['PATH'] = os.environ['CUDA_HOME'] + '/bin:' + os.environ['PATH']
18
- os.environ['LD_LIBRARY_PATH'] = os.environ['CUDA_HOME'] + '/lib64:' + os.environ.get('LD_LIBRARY_PATH', '')
19
-
20
- # Install the required package from GitHub
21
- subprocess.check_call(["pip", "install", "git+https://github.com/mhamilton723/FeatUp"])
22
-
23
-
24
  import matplotlib.pyplot as plt
25
  import torch
26
  import torchvision.transforms as T
27
- from PIL import Image
28
  import gradio as gr
29
- from featup.util import norm, unnorm, pca, remove_axes
30
  from pytorch_lightning import seed_everything
31
  import os
32
  import requests
@@ -35,6 +14,7 @@ import spaces
35
 
36
 
37
  def plot_feats(image, lr, hr):
 
38
  assert len(image.shape) == len(lr.shape) == len(hr.shape) == 3
39
  seed_everything(0)
40
  [lr_feats_pca, hr_feats_pca], _ = pca(
@@ -113,6 +93,30 @@ models = {o: torch.hub.load("mhamilton723/FeatUp", o) for o in options}
113
 
114
  @spaces.GPU
115
  def upsample_features(image, model_option):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
  # Image preprocessing
117
  input_size = 224
118
  transform = T.Compose([
 
2
  import subprocess
3
  import glob
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  import matplotlib.pyplot as plt
6
  import torch
7
  import torchvision.transforms as T
 
8
  import gradio as gr
 
9
  from pytorch_lightning import seed_everything
10
  import os
11
  import requests
 
14
 
15
 
16
  def plot_feats(image, lr, hr):
17
+ from featup.util import pca, remove_axes
18
  assert len(image.shape) == len(lr.shape) == len(hr.shape) == 3
19
  seed_everything(0)
20
  [lr_feats_pca, hr_feats_pca], _ = pca(
 
93
 
94
  @spaces.GPU
95
  def upsample_features(image, model_option):
96
+
97
+ # Find all CUDA directories that match /usr/local/cuda*
98
+ cuda_dirs = glob.glob('/usr/local/cuda*')
99
+
100
+ if not cuda_dirs:
101
+ raise EnvironmentError('No CUDA installation found. Please install CUDA or set CUDA_HOME manually.')
102
+
103
+ # Assume the highest version of CUDA is the one to use
104
+ cuda_dirs.sort()
105
+ cuda_home = cuda_dirs[-1]
106
+
107
+ # Set the CUDA_HOME environment variable
108
+ os.environ['CUDA_HOME'] = cuda_home
109
+ os.environ['PATH'] = os.environ['CUDA_HOME'] + '/bin:' + os.environ['PATH']
110
+ os.environ['LD_LIBRARY_PATH'] = os.environ['CUDA_HOME'] + '/lib64:' + os.environ.get('LD_LIBRARY_PATH', '')
111
+
112
+ # Install the required package from GitHub
113
+ subprocess.check_call(["pip", "install", "git+https://github.com/mhamilton723/FeatUp"])
114
+
115
+
116
+
117
+ from featup.util import norm, unnorm
118
+
119
+
120
  # Image preprocessing
121
  input_size = 224
122
  transform = T.Compose([