abreza commited on
Commit
f75061a
·
1 Parent(s): 1f65c6b
Files changed (1) hide show
  1. app.py +24 -24
app.py CHANGED
@@ -89,30 +89,30 @@ model_option = gr.Radio(options, value="dino16",
89
 
90
  @spaces.GPU
91
  def upsample_features(image, model_option):
92
-
93
- subprocess.check_call(
94
- ["pip", "install", "git+https://github.com/mhamilton723/FeatUp"])
95
-
96
- from featup.util import norm, unnorm
97
- models = {o: torch.hub.load("mhamilton723/FeatUp", o) for o in options}
98
-
99
- # Image preprocessing
100
- input_size = 224
101
- transform = T.Compose([
102
- T.Resize(input_size),
103
- T.CenterCrop((input_size, input_size)),
104
- T.ToTensor(),
105
- norm
106
- ])
107
- image_tensor = transform(image).unsqueeze(0).cuda()
108
-
109
- # Load the selected model
110
- upsampler = models[model_option].cuda()
111
- hr_feats = upsampler(image_tensor)
112
- lr_feats = upsampler.model(image_tensor)
113
- upsampler.cpu()
114
-
115
- return plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0])
116
 
117
 
118
  demo = gr.Interface(fn=upsample_features,
 
89
 
90
  @spaces.GPU
91
  def upsample_features(image, model_option):
92
+ with torch.no_grad():
93
+ subprocess.check_call(
94
+ ["pip", "install", "git+https://github.com/mhamilton723/FeatUp"])
95
+
96
+ from featup.util import norm, unnorm
97
+ models = {o: torch.hub.load("mhamilton723/FeatUp", o) for o in options}
98
+
99
+ # Image preprocessing
100
+ input_size = 224
101
+ transform = T.Compose([
102
+ T.Resize(input_size),
103
+ T.CenterCrop((input_size, input_size)),
104
+ T.ToTensor(),
105
+ norm
106
+ ])
107
+ image_tensor = transform(image).unsqueeze(0).cuda()
108
+
109
+ # Load the selected model
110
+ upsampler = models[model_option].cuda()
111
+ hr_feats = upsampler(image_tensor)
112
+ lr_feats = upsampler.model(image_tensor)
113
+ upsampler.cpu()
114
+
115
+ return plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0])
116
 
117
 
118
  demo = gr.Interface(fn=upsample_features,