abullard1 commited on
Commit
985108d
·
verified ·
1 Parent(s): 3cd675d

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -147
app.py DELETED
@@ -1,147 +0,0 @@
1
- # HuggingFace Spaces file to run a Gradio Interface for the ALBERT v2 Steam Review Constructiveness Classifier by Samuel Ruairí Bullard
2
-
3
- # Package Imports
4
- import gradio as gr
5
- from transformers import pipeline
6
- import torch
7
-
8
- # Checks if CUDA is available on the machine
9
- print("CUDA Available: ", torch.cuda.is_available())
10
-
11
- # if not os.path.isfile("./README.md"):
12
- # !git clone https://huggingface.co/spaces/abullard1/albert-v2-steam-review-constructiveness-classifier
13
-
14
- # Sets the torch dtype to 16-bit half-precision floating-point format if CUDA is available, otherwise sets it to 32-bit single-precision floating-point format. (Available for GPUs with Tensor Cores like NVIDIA's Volta, Turing, Ampere Architectures have for example)
15
- device = 0 if torch.cuda.is_available() else -1
16
- torch_d_type = torch.float16 if torch.cuda.is_available() else torch.float32
17
- print(f"Device: {device}")
18
-
19
- # Defines the name of the base model, the classifier was fine-tuned from
20
- base_model_name = "albert-base-v2"
21
-
22
- # Defines the name of the fine-tuned model used for the steam-review constructiveness classification
23
- finetuned_model_name = "abullard1/albert-v2-steam-review-constructiveness-classifier"
24
-
25
- # PyTorch classifier pipeline
26
- classifier = pipeline(
27
- task="text-classification", # Defines the task
28
- model=finetuned_model_name, # Defines the fine-tuned model to use
29
- tokenizer=base_model_name, # Defines the tokenizer to use (same as the base model)
30
- device=device, # Defines the device the classification will be run on
31
- top_k=None, # Returns all scores for all labels, not just the one with the highest score
32
- truncation=True, # Truncates the input text if it exceeds the maximum length
33
- max_length=512, # Defines the maximum length of the input text (512 for BERT. Explicitly set here)
34
- torch_dtype=torch_d_type
35
- # Sets the torch dtype to 16-bit half-precision floating-point format if CUDA is available, otherwise sets it to 32-bit single-precision floating-point format
36
- )
37
-
38
-
39
- # Extracts the labels and scores from the prediction result
40
- def classify_steam_review(input_text):
41
- result = classifier(input_text)
42
-
43
- label_1, label_2 = result[0][0]["label"], result[0][1]["label"]
44
- score_1, score_2 = result[0][0]["score"], result[0][1]["score"]
45
-
46
- return {"label_1": label_1, "score_1": score_1, "label_2": label_2, "score_2": score_2}
47
-
48
-
49
- # Provides a textual representation of the classification result
50
- def get_steam_review_classification_result_text(label_1, score_1, label_2, score_2):
51
- # Maps label values to constructiveness
52
- def label_to_constructiveness(label):
53
- return "Constructive" if label == "LABEL_1" else "Not Constructive"
54
-
55
- # Formats the output in a readable format
56
- def format_output(label, score, emoji):
57
- return f'{label_to_constructiveness(label)} with a score of {score}. {emoji}'
58
-
59
- # Determines the label and score with the highest score
60
- if score_1 >= score_2:
61
- return format_output(label_1, score_1, "👍🏻")
62
- else:
63
- return format_output(label_2, score_2, "👎🏻")
64
-
65
-
66
- # Examples Steam Reviews to display in the Gradio Interface using the "examples" parameter
67
- examples = [
68
- [
69
- "Review: I think this is a great game but it still has some room for improvement., Playtime: 12, Voted Up: True, Upvotes: 1, Votes Funny: 0"],
70
- ["Review: Trash game. Deleted., Playtime: 1, Voted Up: False, Upvotes: 0, Votes Funny: 0"],
71
- ["Review: This game is amazing., Playtime: 100, Voted Up: True, Upvotes: 1, Votes Funny: 0"],
72
- ["Review: Great game, but the community is toxic., Playtime: 50, Voted Up: True, Upvotes: 1, Votes Funny: 0"]
73
- ]
74
-
75
- # HTML article to display in the Gradio Interface using the "article" parameter
76
- article = (
77
- """
78
- *Format your input as follows for the best results: **Review**: {review_text}, **Playtime**: {author_playtime_at_review}, **Voted Up**: {voted_up}, **Upvotes**: {upvotes}, **Votes Funny**: {votes_funny}.*
79
- """
80
- )
81
-
82
- # Main Gradio Interface using Gradio Blocks
83
- # Docs: https://www.gradio.app/docs/gradio/blocks
84
- with gr.Blocks() as steam_reviews_classifier_block:
85
- gr.Markdown("## Steam Review Constructiveness Classifier")
86
- gr.Markdown(article)
87
-
88
- # Main Column
89
- with gr.Column():
90
- # Upper Row (Input Textbox, Constructive Label, Not Constructive Label)
91
- with gr.Row(equal_height=True):
92
- # Input Textbox Column
93
- with gr.Column():
94
- input_textbox = gr.Textbox(
95
- lines=8,
96
- label="Steam Review",
97
- # info="Input Steam Review here",
98
- placeholder="Review: I think this is a great game but it still has some room for improvement., Playtime: 12, Voted Up: True, Upvotes: 1, Votes Funny: 0",
99
- show_copy_button=False,
100
- value="Review: I think this is a great game but it still has some room for improvement., Playtime: 12, Voted Up: True, Upvotes: 1, Votes Funny: 0"
101
- )
102
-
103
- # Constructive and Not Constructive Labels Column
104
- with gr.Column():
105
- constructive_label = gr.Label(label="Constructive")
106
- not_constructive_label = gr.Label(label="Not Constructive")
107
-
108
- # Examples Component
109
- example_component = gr.Examples(
110
- examples=examples,
111
- inputs=input_textbox
112
- )
113
-
114
- # Output Textbox which shows the textual representation of the Constructiveness Prediction
115
- output_textbox = gr.Textbox(
116
- label="Constructiveness Prediction",
117
- interactive=False,
118
- show_copy_button=False,
119
- # info="Textual representation of the Constructiveness Prediction"
120
- )
121
-
122
- # Submit Button
123
- submit_button = gr.Button(value="Submit")
124
-
125
- # Function to run when the Submit Button is clicked (Passes the input text to the classifier and displays the output text)
126
- def on_submit_click(input_text):
127
- classification_result = classify_steam_review(input_text)
128
- classification_result_text = get_steam_review_classification_result_text(
129
- label_1=classification_result["label_1"],
130
- score_1=classification_result["score_1"],
131
- label_2=classification_result["label_2"],
132
- score_2=classification_result["score_2"]
133
- )
134
- output_text = classification_result_text
135
- constructive, not_constructive = str(classification_result["score_1"]), str(classification_result["score_2"])
136
- return output_text, constructive, not_constructive
137
-
138
-
139
- # onClick event for the Submit Button
140
- submit_button.click(
141
- fn=on_submit_click,
142
- inputs=input_textbox,
143
- outputs=[output_textbox, not_constructive_label, constructive_label]
144
- )
145
-
146
- # Launches the Gradio Blocks Interface
147
- steam_reviews_classifier_block.launch()