Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer | |
from typing import List, Dict, Any | |
# --- Agent Definitions --- | |
class Agent: | |
def __init__(self, name: str, role: str, skills: List[str], model_name: str = None): | |
self.name = name | |
self.role = role | |
self.skills = skills | |
self.model = None | |
if model_name: | |
self.load_model(model_name) | |
def load_model(self, model_name: str): | |
self.model = pipeline(task="text-classification", model=model_name) | |
def handle_task(self, task: str) -> str: | |
# Placeholder for task handling logic | |
# This is where each agent will implement its specific behavior | |
return f"Agent {self.name} received task: {task}" | |
class AgentCluster: | |
def __init__(self, agents: List[Agent]): | |
self.agents = agents | |
self.task_queue = [] | |
def add_task(self, task: str): | |
self.task_queue.append(task) | |
def process_tasks(self): | |
for task in self.task_queue: | |
# Assign task to the most suitable agent based on skills | |
best_agent = self.find_best_agent(task) | |
if best_agent: | |
result = best_agent.handle_task(task) | |
print(f"Agent {best_agent.name} completed task: {task} - Result: {result}") | |
else: | |
print(f"No suitable agent found for task: {task}") | |
self.task_queue = [] | |
def find_best_agent(self, task: str) -> Agent: | |
# Placeholder for agent selection logic | |
# This is where the cluster will determine which agent is best for a given task | |
return self.agents[0] # For now, just return the first agent | |
# --- Agent Clusters for Different Web Apps --- | |
# Agent Cluster for a Code Review Tool | |
code_review_agents = AgentCluster([ | |
Agent("CodeAnalyzer", "Code Reviewer", ["Python", "JavaScript", "C++"], "distilbert-base-uncased-finetuned-mrpc"), | |
Agent("StyleChecker", "Code Stylist", ["Code Style", "Readability", "Best Practices"], "google/flan-t5-base"), | |
Agent("SecurityScanner", "Security Expert", ["Vulnerability Detection", "Security Best Practices"], "google/flan-t5-base"), | |
]) | |
# Agent Cluster for a Project Management Tool | |
project_management_agents = AgentCluster([ | |
Agent("TaskManager", "Project Manager", ["Task Management", "Prioritization", "Deadline Tracking"], "google/flan-t5-base"), | |
Agent("ResourceAllocator", "Resource Manager", ["Resource Allocation", "Team Management", "Project Planning"], "google/flan-t5-base"), | |
Agent("ProgressTracker", "Progress Monitor", ["Progress Tracking", "Reporting", "Issue Resolution"], "google/flan-t5-base"), | |
]) | |
# Agent Cluster for a Documentation Generator | |
documentation_agents = AgentCluster([ | |
Agent("DocWriter", "Documentation Writer", ["Technical Writing", "API Documentation", "User Guides"], "google/flan-t5-base"), | |
Agent("CodeDocumenter", "Code Commenter", ["Code Documentation", "Code Explanation", "Code Readability"], "google/flan-t5-base"), | |
Agent("ContentOrganizer", "Content Manager", ["Content Structure", "Information Architecture", "Content Organization"], "google/flan-t5-base"), | |
]) | |
# --- Web App Logic --- | |
def process_input(input_text: str, selected_cluster: str): | |
"""Processes user input and assigns tasks to the appropriate agent cluster.""" | |
if selected_cluster == "Code Review": | |
cluster = code_review_agents | |
elif selected_cluster == "Project Management": | |
cluster = project_management_agents | |
elif selected_cluster == "Documentation Generation": | |
cluster = documentation_agents | |
else: | |
return "Please select a valid agent cluster." | |
cluster.add_task(input_text) | |
cluster.process_tasks() | |
return "Task processed successfully!" | |
# --- Gradio Interface --- | |
with gr.Blocks() as demo: | |
gr.Markdown("## Agent-Powered Development Automation") | |
input_text = gr.Textbox(label="Enter your development task:") | |
selected_cluster = gr.Radio( | |
label="Select Agent Cluster", choices=["Code Review", "Project Management", "Documentation Generation"] | |
) | |
submit_button = gr.Button("Submit") | |
output_text = gr.Textbox(label="Output") | |
submit_button.click(process_input, inputs=[input_text, selected_cluster], outputs=output_text) | |
demo.launch() | |