Spaces:
Runtime error
Runtime error
acecalisto3
commited on
Commit
•
afe9aee
1
Parent(s):
a02dd09
Update app.py
Browse files
app.py
CHANGED
@@ -6,10 +6,7 @@ import json
|
|
6 |
import re
|
7 |
import torch
|
8 |
import tempfile
|
9 |
-
import subprocess
|
10 |
-
import ast
|
11 |
import os
|
12 |
-
import dataclasses
|
13 |
from pathlib import Path
|
14 |
from typing import Dict, List, Tuple, Optional, Any, Union
|
15 |
from dataclasses import dataclass, field
|
@@ -19,7 +16,6 @@ from sentence_transformers import SentenceTransformer
|
|
19 |
import faiss
|
20 |
import numpy as np
|
21 |
from PIL import Image
|
22 |
-
from templates import TemplateManager, Template # Import TemplateManager and Template
|
23 |
|
24 |
# Configure logging
|
25 |
logging.basicConfig(
|
@@ -37,72 +33,112 @@ DEFAULT_PORT = 7860
|
|
37 |
MODEL_CACHE_DIR = Path("model_cache")
|
38 |
TEMPLATE_DIR = Path("templates")
|
39 |
TEMP_DIR = Path("temp")
|
40 |
-
DATABASE_PATH = Path("code_database.json")
|
41 |
|
42 |
# Ensure directories exist
|
43 |
for directory in [MODEL_CACHE_DIR, TEMPLATE_DIR, TEMP_DIR]:
|
44 |
directory.mkdir(exist_ok=True, parents=True)
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
class RAGSystem:
|
47 |
def __init__(self, model_name: str = "gpt2", device: str = "cuda" if torch.cuda.is_available() else "cpu", embedding_model="all-mpnet-base-v2"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
try:
|
49 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
50 |
-
self.model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
51 |
-
self.device = device
|
52 |
self.pipe = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer, device=self.device)
|
53 |
self.embedding_model = SentenceTransformer(embedding_model)
|
54 |
self.load_database()
|
55 |
logger.info("RAG system initialized successfully.")
|
56 |
except Exception as e:
|
57 |
logger.error(f"Error loading language model or embedding model: {e}. Falling back to placeholder generation.")
|
58 |
-
self.pipe = None
|
59 |
-
self.embedding_model = None
|
60 |
-
self.code_embeddings = None
|
61 |
|
62 |
def load_database(self):
|
63 |
-
"""Loads or creates the code database"""
|
64 |
if DATABASE_PATH.exists():
|
65 |
try:
|
66 |
with open(DATABASE_PATH, 'r', encoding='utf-8') as f:
|
67 |
self.database = json.load(f)
|
68 |
self.code_embeddings = np.array(self.database['embeddings'])
|
69 |
logger.info("Loaded code database from file.")
|
|
|
70 |
except (json.JSONDecodeError, KeyError) as e:
|
71 |
logger.error(f"Error loading code database: {e}. Creating new database.")
|
72 |
self.database = {'codes': [], 'embeddings': []}
|
73 |
self.code_embeddings = np.array([])
|
74 |
-
|
75 |
else:
|
76 |
logger.info("Code database does not exist. Creating new database.")
|
77 |
self.database = {'codes': [], 'embeddings': []}
|
78 |
self.code_embeddings = np.array([])
|
|
|
79 |
|
80 |
if self.embedding_model and len(self.database['codes']) != len(self.database['embeddings']):
|
81 |
logger.warning("Mismatch between number of codes and embeddings, rebuilding embeddings.")
|
82 |
self.rebuild_embeddings()
|
83 |
elif self.embedding_model is None:
|
84 |
-
logger.warning("Embeddings are not supported in this context.")
|
85 |
|
86 |
-
|
87 |
if len(self.code_embeddings) > 0 and self.embedding_model:
|
88 |
self.index = faiss.IndexFlatL2(self.code_embeddings.shape[1]) # L2 distance
|
89 |
self.index.add(self.code_embeddings)
|
90 |
|
91 |
def add_to_database(self, code: str):
|
92 |
-
"""Adds a code snippet to the database"""
|
93 |
try:
|
|
|
|
|
94 |
embedding = self.embedding_model.encode(code)
|
95 |
self.database['codes'].append(code)
|
96 |
self.database['embeddings'].append(embedding.tolist())
|
97 |
-
self.code_embeddings = np.vstack((self.code_embeddings, embedding))
|
98 |
-
self.index.add(np.array([embedding]))
|
99 |
self.save_database()
|
100 |
logger.info(f"Added code snippet to database. Total size: {len(self.database['codes'])}.")
|
101 |
except Exception as e:
|
102 |
logger.error(f"Error adding to database: {e}")
|
103 |
|
104 |
def save_database(self):
|
105 |
-
"""Saves the database to a file"""
|
106 |
try:
|
107 |
with open(DATABASE_PATH, 'w', encoding='utf-8') as f:
|
108 |
json.dump(self.database, f, indent=2)
|
@@ -111,22 +147,21 @@ class RAGSystem:
|
|
111 |
logger.error(f"Error saving database: {e}")
|
112 |
|
113 |
def rebuild_embeddings(self):
|
114 |
-
"""Rebuilds embeddings from the codes"""
|
115 |
try:
|
|
|
|
|
116 |
embeddings = self.embedding_model.encode(self.database['codes'])
|
117 |
self.code_embeddings = embeddings
|
118 |
self.database['embeddings'] = embeddings.tolist()
|
119 |
-
self.
|
120 |
-
self.index.add(embeddings)
|
121 |
self.save_database()
|
122 |
logger.info("Rebuilt and saved embeddings to the database.")
|
123 |
except Exception as e:
|
124 |
logger.error(f"Error rebuilding embeddings: {e}")
|
125 |
|
126 |
def retrieve_similar_code(self, description: str, top_k: int = 3) -> List[str]:
|
127 |
-
|
128 |
-
|
129 |
-
logger.warning("Embedding model is not available. Cannot retrieve similar code.")
|
130 |
return []
|
131 |
try:
|
132 |
embedding = self.embedding_model.encode(description)
|
@@ -139,7 +174,7 @@ class RAGSystem:
|
|
139 |
|
140 |
def generate_code(self, description: str, template_code: str) -> str:
|
141 |
retrieved_codes = self.retrieve_similar_code(description)
|
142 |
-
prompt = f"Description: {description}
|
143 |
if self.pipe:
|
144 |
try:
|
145 |
generated_text = self.pipe(prompt, max_length=500, num_return_sequences=1)[0]['generated_text']
|
@@ -151,58 +186,25 @@ class RAGSystem:
|
|
151 |
return template_code
|
152 |
else:
|
153 |
logger.warning("Text generation pipeline is not available. Returning placeholder code.")
|
154 |
-
return f"# Placeholder code generation. Description: {description}
|
155 |
-
|
156 |
-
def generate_interface(self, screenshot: Optional[Image.Image], description: str) -> str:
|
157 |
-
retrieved_codes = self.retrieve_similar_code(description)
|
158 |
-
prompt = f"Create a Gradio interface based on this description: {description}\nRetrieved Code Snippets:\n{''.join([f'```python\n{code}\n```\n' for code in retrieved_codes])}"
|
159 |
-
if screenshot:
|
160 |
-
prompt += "\nThe interface should resemble the provided screenshot."
|
161 |
-
prompt += "\n```python\n"
|
162 |
-
if self.pipe:
|
163 |
-
try:
|
164 |
-
generated_text = self.pipe(prompt, max_length=500, num_return_sequences=1)[0]['generated_text']
|
165 |
-
generated_code = generated_text.split("```")[1].strip()
|
166 |
-
logger.info("Interface code generated successfully.")
|
167 |
-
return generated_code
|
168 |
-
except Exception as e:
|
169 |
-
logger.error(f"Error generating interface with language model: {e}. Returning placeholder.")
|
170 |
-
return "import gradio as gr\n\ndemo = gr.Interface(fn=lambda x:x, inputs='text', outputs='text')\ndemo.launch()"
|
171 |
-
else:
|
172 |
-
logger.warning("Text generation pipeline is not available. Returning placeholder interface code.")
|
173 |
-
return "import gradio as gr\n\ndemo = gr.Interface(fn=lambda x:x, inputs='text', outputs='text')\ndemo.launch()"
|
174 |
-
|
175 |
-
class PreviewManager:
|
176 |
-
def __init__(self):
|
177 |
-
self.preview_code = ""
|
178 |
-
|
179 |
-
def update_preview(self, code: str):
|
180 |
-
"""Update the preview with the generated code."""
|
181 |
-
self.preview_code = code
|
182 |
-
logger.info("Preview updated with new code.")
|
183 |
|
184 |
class GradioInterface:
|
185 |
def __init__(self):
|
186 |
self.template_manager = TemplateManager(TEMPLATE_DIR)
|
187 |
self.template_manager.load_templates()
|
188 |
-
self.current_code = ""
|
189 |
self.rag_system = RAGSystem()
|
190 |
-
self.preview_manager = PreviewManager()
|
191 |
|
192 |
def _extract_components(self, code: str) -> List[str]:
|
193 |
-
"""Extract components from the code."""
|
194 |
components = []
|
195 |
-
function_matches = re.findall(r'def (\w+)', code
|
196 |
-
|
|
|
197 |
components.extend(class_matches)
|
198 |
logger.info(f"Extracted components: {components}")
|
199 |
return components
|
200 |
|
201 |
def _get_template_choices(self) -> List[str]:
|
202 |
-
|
203 |
-
choices = list(self.template_manager.templates.keys())
|
204 |
-
logger.info(f"Available template choices: {choices}")
|
205 |
-
return choices
|
206 |
|
207 |
def launch(self, **kwargs):
|
208 |
with gr.Blocks() as interface:
|
@@ -212,59 +214,51 @@ class GradioInterface:
|
|
212 |
generate_button = gr.Button("Generate Code")
|
213 |
template_choice = gr.Dropdown(label="Select Template", choices=self._get_template_choices(), value=None)
|
214 |
save_button = gr.Button("Save as Template")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
generate_button.click(
|
217 |
-
fn=
|
218 |
inputs=[description_input, template_choice],
|
219 |
-
outputs=code_output
|
220 |
)
|
221 |
|
222 |
save_button.click(
|
223 |
-
fn=
|
224 |
inputs=[code_output, template_choice, description_input],
|
225 |
-
outputs=code_output
|
226 |
-
)
|
227 |
-
|
228 |
-
gr.Markdown("### Preview")
|
229 |
-
preview_output = gr.Textbox(label="Preview", interactive=False)
|
230 |
-
self.preview_manager.update_preview(code_output)
|
231 |
-
|
232 |
-
generate_button.click(
|
233 |
-
fn=lambda code: self.preview_manager.update_preview(code),
|
234 |
-
inputs=code_output,
|
235 |
-
outputs=preview_output
|
236 |
)
|
237 |
|
238 |
logger.info("Launching Gradio interface.")
|
239 |
interface.launch(**kwargs)
|
240 |
|
241 |
-
def generate_code(self, description: str, template_choice: Optional[str]) -> str:
|
242 |
-
"""Generate code based on the description and selected template."""
|
243 |
-
template_code = self.template_manager.get_template(template_choice) if template_choice else "" # Get template code if selected
|
244 |
-
logger.info(f"Generating code for description: {description} with template: {template_choice}")
|
245 |
-
return self.rag_system.generate_code(description, template_code)
|
246 |
-
|
247 |
-
def save_template(self, code: str, name: str, description: str) -> str:
|
248 |
-
"""Save the generated code as a template."""
|
249 |
-
try:
|
250 |
-
components = self._extract_components(code)
|
251 |
-
template = Template(code=code, description=description, components=components)
|
252 |
-
if self.template_manager.save_template(name, template):
|
253 |
-
self.rag_system.add_to_database(code) # Add code to the database
|
254 |
-
logger.info(f"Template '{name}' saved successfully.")
|
255 |
-
return f"✅ Template '{name}' saved successfully."
|
256 |
-
else:
|
257 |
-
logger.error("Failed to save template.")
|
258 |
-
return "❌ Failed to save template."
|
259 |
-
except Exception as e:
|
260 |
-
logger.error(f"Error saving template: {e}")
|
261 |
-
return f"❌ Error saving template: {str(e)}"
|
262 |
-
|
263 |
def main():
|
264 |
logger.info("=== Application Startup ===")
|
265 |
-
|
266 |
try:
|
267 |
-
# Initialize and launch interface
|
268 |
interface = GradioInterface()
|
269 |
interface.launch(
|
270 |
server_port=DEFAULT_PORT,
|
|
|
6 |
import re
|
7 |
import torch
|
8 |
import tempfile
|
|
|
|
|
9 |
import os
|
|
|
10 |
from pathlib import Path
|
11 |
from typing import Dict, List, Tuple, Optional, Any, Union
|
12 |
from dataclasses import dataclass, field
|
|
|
16 |
import faiss
|
17 |
import numpy as np
|
18 |
from PIL import Image
|
|
|
19 |
|
20 |
# Configure logging
|
21 |
logging.basicConfig(
|
|
|
33 |
MODEL_CACHE_DIR = Path("model_cache")
|
34 |
TEMPLATE_DIR = Path("templates")
|
35 |
TEMP_DIR = Path("temp")
|
36 |
+
DATABASE_PATH = Path("code_database.json")
|
37 |
|
38 |
# Ensure directories exist
|
39 |
for directory in [MODEL_CACHE_DIR, TEMPLATE_DIR, TEMP_DIR]:
|
40 |
directory.mkdir(exist_ok=True, parents=True)
|
41 |
|
42 |
+
@dataclass
|
43 |
+
class Template:
|
44 |
+
code: str
|
45 |
+
description: str
|
46 |
+
components: List[str] = field(default_factory=list)
|
47 |
+
|
48 |
+
class TemplateManager:
|
49 |
+
def __init__(self, template_dir: Path):
|
50 |
+
self.template_dir = template_dir
|
51 |
+
self.templates: Dict[str, Template] = {}
|
52 |
+
|
53 |
+
def load_templates(self):
|
54 |
+
for file_path in self.template_dir.glob("*.json"):
|
55 |
+
try:
|
56 |
+
with open(file_path, 'r') as f:
|
57 |
+
template_data = json.load(f)
|
58 |
+
template = Template(**template_data)
|
59 |
+
self.templates[template_data['description']] = template
|
60 |
+
except json.JSONDecodeError as e:
|
61 |
+
logger.error(f"Error loading template from {file_path}: {e}")
|
62 |
+
except KeyError as e:
|
63 |
+
logger.error(f"Missing key in template file {file_path}: {e}")
|
64 |
+
|
65 |
+
def save_template(self, name: str, template: Template) -> bool:
|
66 |
+
file_path = self.template_dir / f"{name}.json"
|
67 |
+
try:
|
68 |
+
with open(file_path, 'w') as f:
|
69 |
+
json.dump(dataclasses.asdict(template), f, indent=2)
|
70 |
+
return True
|
71 |
+
except Exception as e:
|
72 |
+
logger.error(f"Error saving template to {file_path}: {e}")
|
73 |
+
return False
|
74 |
+
|
75 |
+
def get_template(self, name: str) -> Optional[str]:
|
76 |
+
return self.templates.get(name, {}).get('code', "")
|
77 |
+
|
78 |
class RAGSystem:
|
79 |
def __init__(self, model_name: str = "gpt2", device: str = "cuda" if torch.cuda.is_available() else "cpu", embedding_model="all-mpnet-base-v2"):
|
80 |
+
self.device = device
|
81 |
+
self.embedding_model = None
|
82 |
+
self.code_embeddings = None
|
83 |
+
self.index = None
|
84 |
+
self.database = {'codes': [], 'embeddings': []}
|
85 |
+
self.pipe = None
|
86 |
+
|
87 |
try:
|
88 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=MODEL_CACHE_DIR)
|
89 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir=MODEL_CACHE_DIR).to(device)
|
|
|
90 |
self.pipe = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer, device=self.device)
|
91 |
self.embedding_model = SentenceTransformer(embedding_model)
|
92 |
self.load_database()
|
93 |
logger.info("RAG system initialized successfully.")
|
94 |
except Exception as e:
|
95 |
logger.error(f"Error loading language model or embedding model: {e}. Falling back to placeholder generation.")
|
|
|
|
|
|
|
96 |
|
97 |
def load_database(self):
|
|
|
98 |
if DATABASE_PATH.exists():
|
99 |
try:
|
100 |
with open(DATABASE_PATH, 'r', encoding='utf-8') as f:
|
101 |
self.database = json.load(f)
|
102 |
self.code_embeddings = np.array(self.database['embeddings'])
|
103 |
logger.info("Loaded code database from file.")
|
104 |
+
self._build_index()
|
105 |
except (json.JSONDecodeError, KeyError) as e:
|
106 |
logger.error(f"Error loading code database: {e}. Creating new database.")
|
107 |
self.database = {'codes': [], 'embeddings': []}
|
108 |
self.code_embeddings = np.array([])
|
109 |
+
self._build_index()
|
110 |
else:
|
111 |
logger.info("Code database does not exist. Creating new database.")
|
112 |
self.database = {'codes': [], 'embeddings': []}
|
113 |
self.code_embeddings = np.array([])
|
114 |
+
self._build_index()
|
115 |
|
116 |
if self.embedding_model and len(self.database['codes']) != len(self.database['embeddings']):
|
117 |
logger.warning("Mismatch between number of codes and embeddings, rebuilding embeddings.")
|
118 |
self.rebuild_embeddings()
|
119 |
elif self.embedding_model is None:
|
120 |
+
logger.warning ("Embeddings are not supported in this context.")
|
121 |
|
122 |
+
def _build_index(self):
|
123 |
if len(self.code_embeddings) > 0 and self.embedding_model:
|
124 |
self.index = faiss.IndexFlatL2(self.code_embeddings.shape[1]) # L2 distance
|
125 |
self.index.add(self.code_embeddings)
|
126 |
|
127 |
def add_to_database(self, code: str):
|
|
|
128 |
try:
|
129 |
+
if self.embedding_model is None:
|
130 |
+
raise ValueError("Embedding model not loaded.")
|
131 |
embedding = self.embedding_model.encode(code)
|
132 |
self.database['codes'].append(code)
|
133 |
self.database['embeddings'].append(embedding.tolist())
|
134 |
+
self.code_embeddings = np.vstack((self.code_embeddings, embedding)) if len(self.code_embeddings) > 0 else np.array([embedding])
|
135 |
+
self.index.add(np.array([embedding]))
|
136 |
self.save_database()
|
137 |
logger.info(f"Added code snippet to database. Total size: {len(self.database['codes'])}.")
|
138 |
except Exception as e:
|
139 |
logger.error(f"Error adding to database: {e}")
|
140 |
|
141 |
def save_database(self):
|
|
|
142 |
try:
|
143 |
with open(DATABASE_PATH, 'w', encoding='utf-8') as f:
|
144 |
json.dump(self.database, f, indent=2)
|
|
|
147 |
logger.error(f"Error saving database: {e}")
|
148 |
|
149 |
def rebuild_embeddings(self):
|
|
|
150 |
try:
|
151 |
+
if self.embedding_model is None:
|
152 |
+
raise ValueError("Embedding model not loaded.")
|
153 |
embeddings = self.embedding_model.encode(self.database['codes'])
|
154 |
self.code_embeddings = embeddings
|
155 |
self.database['embeddings'] = embeddings.tolist()
|
156 |
+
self._build_index()
|
|
|
157 |
self.save_database()
|
158 |
logger.info("Rebuilt and saved embeddings to the database.")
|
159 |
except Exception as e:
|
160 |
logger.error(f"Error rebuilding embeddings: {e}")
|
161 |
|
162 |
def retrieve_similar_code(self, description: str, top_k: int = 3) -> List[str]:
|
163 |
+
if self.embedding_model is None or self.index is None:
|
164 |
+
logger.warning("Embedding model or index not available. Cannot retrieve similar code.")
|
|
|
165 |
return []
|
166 |
try:
|
167 |
embedding = self.embedding_model.encode(description)
|
|
|
174 |
|
175 |
def generate_code(self, description: str, template_code: str) -> str:
|
176 |
retrieved_codes = self.retrieve_similar_code(description)
|
177 |
+
prompt = f"Description: {description} Retrieved Code Snippets: {''.join([f'```python {code} ```' for code in retrieved_codes])} Template: ```python {template_code} ``` Generated Code: ```python "
|
178 |
if self.pipe:
|
179 |
try:
|
180 |
generated_text = self.pipe(prompt, max_length=500, num_return_sequences=1)[0]['generated_text']
|
|
|
186 |
return template_code
|
187 |
else:
|
188 |
logger.warning("Text generation pipeline is not available. Returning placeholder code.")
|
189 |
+
return f"# Placeholder code generation. Description: {description} {template_code}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
class GradioInterface:
|
192 |
def __init__(self):
|
193 |
self.template_manager = TemplateManager(TEMPLATE_DIR)
|
194 |
self.template_manager.load_templates()
|
|
|
195 |
self.rag_system = RAGSystem()
|
|
|
196 |
|
197 |
def _extract_components(self, code: str) -> List[str]:
|
|
|
198 |
components = []
|
199 |
+
function_matches = re.findall(r'def (\w+)\(', code) # added parenthesis for more accuracy
|
200 |
+
components.extend(function_matches)
|
201 |
+
class_matches = re.findall(r'class (\w+)\:', code) # added colon for more accuracy
|
202 |
components.extend(class_matches)
|
203 |
logger.info(f"Extracted components: {components}")
|
204 |
return components
|
205 |
|
206 |
def _get_template_choices(self) -> List[str]:
|
207 |
+
return list(self.template_manager.templates.keys())
|
|
|
|
|
|
|
208 |
|
209 |
def launch(self, **kwargs):
|
210 |
with gr.Blocks() as interface:
|
|
|
214 |
generate_button = gr.Button("Generate Code")
|
215 |
template_choice = gr.Dropdown(label="Select Template", choices=self._get_template_choices(), value=None)
|
216 |
save_button = gr.Button("Save as Template")
|
217 |
+
status_output = gr.Textbox(label="Status", interactive=False)
|
218 |
+
|
219 |
+
def generate_code_wrapper(description, template_choice):
|
220 |
+
try:
|
221 |
+
template_code = self.template_manager.get_template(template_choice) if template_choice else ""
|
222 |
+
generated_code = self.rag_system.generate_code(description, template_code)
|
223 |
+
return generated_code, "Code generated successfully."
|
224 |
+
except Exception as e:
|
225 |
+
return "", f"Error generating code: {e}"
|
226 |
+
|
227 |
+
def save_template_wrapper(code, name, description):
|
228 |
+
try:
|
229 |
+
if not name:
|
230 |
+
return code, "Template name cannot be empty."
|
231 |
+
if not code:
|
232 |
+
return code, "Code cannot be empty."
|
233 |
+
|
234 |
+
components = self._extract_components(code)
|
235 |
+
template = Template(code=code, description=name, components=components)
|
236 |
+
if self.template_manager.save_template(name, template):
|
237 |
+
self.rag_system.add_to_database(code)
|
238 |
+
return code, f"Template '{name}' saved successfully."
|
239 |
+
else:
|
240 |
+
return code, "Failed to save template."
|
241 |
+
except Exception as e:
|
242 |
+
return code, f"Error saving template: {e}"
|
243 |
|
244 |
generate_button.click(
|
245 |
+
fn=generate_code_wrapper,
|
246 |
inputs=[description_input, template_choice],
|
247 |
+
outputs=[code_output, status_output]
|
248 |
)
|
249 |
|
250 |
save_button.click(
|
251 |
+
fn=save_template_wrapper,
|
252 |
inputs=[code_output, template_choice, description_input],
|
253 |
+
outputs=[code_output, status_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
)
|
255 |
|
256 |
logger.info("Launching Gradio interface.")
|
257 |
interface.launch(**kwargs)
|
258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
def main():
|
260 |
logger.info("=== Application Startup ===")
|
|
|
261 |
try:
|
|
|
262 |
interface = GradioInterface()
|
263 |
interface.launch(
|
264 |
server_port=DEFAULT_PORT,
|