Spaces:
Runtime error
Runtime error
acecalisto3
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,367 +1,222 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
6 |
-
from
|
7 |
-
import
|
8 |
-
import
|
9 |
-
from
|
10 |
-
from
|
11 |
-
from
|
12 |
-
from
|
13 |
-
from
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
- You can write code referring to these pages.
|
58 |
-
- The following page will be helpful.
|
59 |
-
GOOD ANSWER EXAMPLE
|
60 |
-
- This is the complete code: -- complete code here --
|
61 |
-
- The answer to your question is -- answer here --
|
62 |
-
List the URLs of the pages you referenced at the end of your answer for verification.
|
63 |
-
Answer in the language used by the user. If the user asks in Japanese, answer in Japanese. If the user asks in Spanish, answer in Spanish.
|
64 |
-
Search in English, especially for programming-related questions. ALWAYS SEARCH IN ENGLISH FOR THOSE.
|
65 |
-
"""
|
66 |
-
|
67 |
-
# --- Custom CSS ---
|
68 |
-
|
69 |
-
customCSS = """
|
70 |
-
#component-7 {
|
71 |
-
height: 1600px;
|
72 |
-
flex-grow: 4;
|
73 |
-
}
|
74 |
-
.gradio-container {
|
75 |
-
display: flex;
|
76 |
-
flex-direction: column;
|
77 |
-
height: 100vh;
|
78 |
-
}
|
79 |
-
.gradio-interface {
|
80 |
-
flex-grow: 1;
|
81 |
-
display: flex;
|
82 |
-
flex-direction: column;
|
83 |
-
}
|
84 |
-
"""
|
85 |
-
|
86 |
-
# --- Functions ---
|
87 |
-
|
88 |
-
# Function to toggle the active state of an agent
|
89 |
-
def toggle_agent(agent_name: str) -> str:
|
90 |
-
"""Toggles the active state of an agent."""
|
91 |
-
global agent_roles
|
92 |
-
agent_roles[agent_name]["active"] = not agent_roles[agent_name]["active"]
|
93 |
-
return f"{agent_name} is now {'active' if agent_roles[agent_name]['active'] else 'inactive'}"
|
94 |
-
|
95 |
-
# Function to get the active agent cluster
|
96 |
-
def get_active_agents() -> List[str]:
|
97 |
-
"""Returns a list of active agents."""
|
98 |
-
return [agent for agent, is_active in agent_roles.items() if is_active]
|
99 |
-
|
100 |
-
# Function to execute code
|
101 |
-
def run_code(code: str) -> str:
|
102 |
-
"""Executes the provided code and returns the output."""
|
103 |
-
try:
|
104 |
-
output = subprocess.check_output(
|
105 |
-
['python', '-c', code],
|
106 |
-
stderr=subprocess.STDOUT,
|
107 |
-
universal_newlines=True,
|
108 |
-
)
|
109 |
-
return output
|
110 |
-
except subprocess.CalledProcessError as e:
|
111 |
-
return f"Error: {e.output}"
|
112 |
-
|
113 |
-
# Function to format the prompt
|
114 |
-
def format_prompt(message: str, history: list[Tuple[str, str]], agent_roles: list[str]) -> str:
|
115 |
-
"""Formats the prompt with the selected agent roles and conversation history."""
|
116 |
-
prompt = initial_prompt # Use the global initial prompt
|
117 |
-
|
118 |
-
for user_prompt, bot_response in history:
|
119 |
-
prompt += f"[INST] {user_prompt} [/INST]"
|
120 |
-
prompt += f" {bot_response}</s> "
|
121 |
-
|
122 |
-
prompt += f"[INST] {message} [/INST]"
|
123 |
-
return prompt
|
124 |
-
|
125 |
-
# Function to generate a response
|
126 |
-
def generate(prompt: str, history: list[Tuple[str, str]], agent_roles: list[str], temperature: float = DEFAULT_TEMPERATURE, max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, top_p: float = DEFAULT_TOP_P, repetition_penalty: float = DEFAULT_REPETITION_PENALTY) -> str:
|
127 |
-
"""Generates a response using the selected agent roles and parameters."""
|
128 |
-
temperature = float(temperature)
|
129 |
-
if temperature < 1e-2:
|
130 |
-
temperature = 1e-2
|
131 |
-
top_p = float(top_p)
|
132 |
-
|
133 |
-
generate_kwargs = dict(
|
134 |
-
temperature=temperature,
|
135 |
-
max_new_tokens=max_new_tokens,
|
136 |
-
top_p=top_p,
|
137 |
-
repetition_penalty=repetition_penalty,
|
138 |
-
do_sample=True,
|
139 |
-
seed=random.randint(0, 10**7),
|
140 |
-
)
|
141 |
-
|
142 |
-
formatted_prompt = format_prompt(prompt, history, agent_roles)
|
143 |
-
|
144 |
-
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
145 |
-
output = ""
|
146 |
-
|
147 |
-
for response in stream:
|
148 |
-
output += response.token.text
|
149 |
-
yield output
|
150 |
-
return output
|
151 |
-
|
152 |
-
# Function to handle user input and generate responses
|
153 |
-
def chat_interface(message: str, history: list[Tuple[str, str]], temperature: float, max_new_tokens: int, top_p: float, repetition_penalty: float) -> Tuple[str, str]:
|
154 |
-
"""Handles user input and generates responses."""
|
155 |
-
if message.startswith("python"):
|
156 |
-
# User entered code, execute it
|
157 |
-
code = message[9:-3]
|
158 |
-
output = run_code(code)
|
159 |
-
return (message, output)
|
160 |
-
else:
|
161 |
-
# User entered a normal message, generate a response
|
162 |
-
active_agents = get_active_agents()
|
163 |
-
response = generate(message, history, active_agents, temperature, max_new_tokens, top_p, repetition_penalty)
|
164 |
-
return (message, response)
|
165 |
-
|
166 |
-
# Function to create a new web app instance
|
167 |
-
def create_web_app(app_name: str, code: str) -> None:
|
168 |
-
"""Creates a new web app instance with the given name and code."""
|
169 |
-
# Create a new directory for the app
|
170 |
-
os.makedirs(app_name, exist_ok=True)
|
171 |
-
|
172 |
-
# Create the app.py file
|
173 |
-
with open(os.path.join(app_name, 'app.py'), 'w') as f:
|
174 |
-
f.write(code)
|
175 |
-
|
176 |
-
# Create the requirements.txt file
|
177 |
-
with open(os.path.join(app_name, 'requirements.txt'), 'w') as f:
|
178 |
-
f.write("gradio\nhuggingface_hub\nrich")
|
179 |
-
|
180 |
-
# Print a success message
|
181 |
-
print(f"Web app '{app_name}' created successfully!")
|
182 |
-
|
183 |
-
# Function to handle the "Create Web App" button click
|
184 |
-
def create_web_app_button_click(app_name: str, code: str) -> str:
|
185 |
-
"""Handles the "Create Web App" button click."""
|
186 |
-
# Validate the app name
|
187 |
-
if not app_name:
|
188 |
-
return "Please enter a valid app name."
|
189 |
-
|
190 |
-
# Create the web app instance
|
191 |
-
create_web_app(app_name, code)
|
192 |
-
|
193 |
-
# Return a success message
|
194 |
-
return f"Web app '{app_name}' created successfully!"
|
195 |
-
|
196 |
-
# Function to handle the "Deploy" button click
|
197 |
-
def deploy_button_click(app_name: str, code: str) -> str:
|
198 |
-
"""Handles the "Deploy" button click."""
|
199 |
-
# Validate the app name
|
200 |
-
if not app_name:
|
201 |
-
return "Please enter a valid app name."
|
202 |
-
|
203 |
-
# Deploy the web app instance
|
204 |
-
# ... (Implement deployment logic here)
|
205 |
-
|
206 |
-
# Return a success message
|
207 |
-
return f"Web app '{app_name}' deployed successfully!"
|
208 |
-
|
209 |
-
# Function to handle the "Local Host" button click
|
210 |
-
def local_host_button_click(app_name: str, code: str) -> str:
|
211 |
-
"""Handles the "Local Host" button click."""
|
212 |
-
# Validate the app name
|
213 |
-
if not app_name:
|
214 |
-
return "Please enter a valid app name."
|
215 |
-
|
216 |
-
# Start the local server
|
217 |
-
os.chdir(app_name)
|
218 |
-
subprocess.Popen(['gradio', 'run', 'app.py', '--share', '--server_port', str(LOCAL_HOST_PORT)])
|
219 |
-
|
220 |
-
# Return a success message
|
221 |
-
return f"Web app '{app_name}' running locally on port {LOCAL_HOST_PORT}!"
|
222 |
-
|
223 |
-
# Function to handle the "Ship" button click
|
224 |
-
def ship_button_click(app_name: str, code: str) -> str:
|
225 |
-
"""Handles the "Ship" button click."""
|
226 |
-
# Validate the app name
|
227 |
-
if not app_name:
|
228 |
-
return "Please enter a valid app name."
|
229 |
-
|
230 |
-
# Ship the web app instance
|
231 |
-
# ... (Implement shipping logic here)
|
232 |
-
|
233 |
-
# Return a success message
|
234 |
-
return f"Web app '{app_name}' shipped successfully!"
|
235 |
-
|
236 |
-
# --- Gradio Interface ---
|
237 |
-
|
238 |
-
with gr.Blocks(css=customCSS, theme='ParityError/Interstellar') as demo:
|
239 |
-
gr.Markdown(
|
240 |
-
"""
|
241 |
-
# AI-Powered Code Generation and Web App Creation
|
242 |
-
This application allows you to interact with an AI agent cluster to generate code and create web apps.
|
243 |
-
"""
|
244 |
-
)
|
245 |
-
|
246 |
-
# --- Agent Selection ---
|
247 |
-
with gr.Row():
|
248 |
-
gr.Markdown("## Select Your Agent Cluster")
|
249 |
-
for agent_name, agent_data in agent_roles.items():
|
250 |
-
button = gr.Button(agent_name, variant="secondary")
|
251 |
-
textbox = gr.Textbox(agent_data["description"], interactive=False)
|
252 |
-
button.click(toggle_agent, inputs=[button], outputs=[textbox])
|
253 |
-
|
254 |
-
# --- Chat Interface ---
|
255 |
-
with gr.Row():
|
256 |
-
gr.Markdown("## Chat with the AI")
|
257 |
-
chatbot = gr.Chatbot()
|
258 |
-
chat_interface_input = gr.Textbox(label="Enter your message", placeholder="Ask me anything!")
|
259 |
-
|
260 |
-
# Parameters
|
261 |
-
with gr.Accordion("Advanced Parameters", open=False):
|
262 |
-
temperature_slider = gr.Slider(
|
263 |
-
label="Temperature",
|
264 |
-
value=DEFAULT_TEMPERATURE,
|
265 |
-
minimum=0.0,
|
266 |
-
maximum=1.0,
|
267 |
-
step=0.05,
|
268 |
-
interactive=True,
|
269 |
-
info="Higher values generate more diverse outputs",
|
270 |
-
)
|
271 |
-
max_new_tokens_slider = gr.Slider(
|
272 |
-
label="Maximum New Tokens",
|
273 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
274 |
-
minimum=64,
|
275 |
-
maximum=4096,
|
276 |
-
step=64,
|
277 |
-
interactive=True,
|
278 |
-
info="The maximum number of new tokens",
|
279 |
-
)
|
280 |
-
top_p_slider = gr.Slider(
|
281 |
-
label="Top-p (Nucleus Sampling)",
|
282 |
-
value=DEFAULT_TOP_P,
|
283 |
-
minimum=0.0,
|
284 |
-
maximum=1,
|
285 |
-
step=0.05,
|
286 |
-
interactive=True,
|
287 |
-
info="Higher values sample more low-probability tokens",
|
288 |
-
)
|
289 |
-
repetition_penalty_slider = gr.Slider(
|
290 |
-
label="Repetition Penalty",
|
291 |
-
value=DEFAULT_REPETITION_PENALTY,
|
292 |
-
minimum=1.0,
|
293 |
-
maximum=2.0,
|
294 |
-
step=0.05,
|
295 |
-
interactive=True,
|
296 |
-
info="Penalize repeated tokens",
|
297 |
-
)
|
298 |
-
|
299 |
-
# Submit Button
|
300 |
-
submit_button = gr.Button("Submit")
|
301 |
-
|
302 |
-
# Chat Interface Logic
|
303 |
-
submit_button.click(
|
304 |
-
chat_interface,
|
305 |
-
inputs=[
|
306 |
-
chat_interface_input,
|
307 |
-
chatbot,
|
308 |
-
temperature_slider,
|
309 |
-
max_new_tokens_slider,
|
310 |
-
top_p_slider,
|
311 |
-
repetition_penalty_slider,
|
312 |
-
],
|
313 |
-
outputs=[
|
314 |
-
chatbot,
|
315 |
-
],
|
316 |
)
|
317 |
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
inputs=[app_name_input, code_output],
|
346 |
-
outputs=[gr.Textbox(label="Status", interactive=False)],
|
347 |
-
)
|
348 |
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
inputs=[chatbot],
|
360 |
-
outputs=[code_output],
|
361 |
-
)
|
362 |
|
363 |
-
#
|
364 |
-
|
|
|
365 |
|
366 |
-
#
|
367 |
-
|
|
|
1 |
+
import asyncio
|
2 |
+
import logging
|
3 |
+
from typing import Dict, Any
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
from flask import Flask, request, jsonify
|
7 |
+
from langchain import PromptTemplate, LLMChain
|
8 |
+
from langchain.llms import OpenAI
|
9 |
+
from langchain.chains import ConversationChain
|
10 |
+
from langchain.memory import ConversationBufferMemory
|
11 |
+
from langchain.vectorstores import Chroma
|
12 |
+
from langchain.embeddings import OpenAIEmbeddings
|
13 |
+
from langchain.document_loaders import TextLoader
|
14 |
+
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
|
17 |
+
# Define core component classes
|
18 |
+
class Task:
|
19 |
+
def __init__(self, task_name: str, input_data: Any, agent_name: str):
|
20 |
+
self.task_name = task_name
|
21 |
+
self.input_data = input_data
|
22 |
+
self.agent_name = agent_name
|
23 |
+
|
24 |
+
class ModelManager:
|
25 |
+
def __init__(self):
|
26 |
+
self.model = None
|
27 |
+
|
28 |
+
async def start(self):
|
29 |
+
logging.info("Starting model.")
|
30 |
+
await asyncio.sleep(1) # Simulate loading time
|
31 |
+
|
32 |
+
async def stop(self):
|
33 |
+
logging.info("Unloading model.")
|
34 |
+
|
35 |
+
class CodeArchitect:
|
36 |
+
def __init__(self, model_manager: ModelManager, model=None):
|
37 |
+
self.model_manager = model_manager
|
38 |
+
self.generator = model if model else pipeline("text-generation", model="gpt2")
|
39 |
+
|
40 |
+
async def start(self):
|
41 |
+
await self.model_manager.start()
|
42 |
+
|
43 |
+
async def stop(self):
|
44 |
+
await self.model_manager.stop()
|
45 |
+
|
46 |
+
async def generate_code(self, text_input: str) -> str:
|
47 |
+
response = self.generator(text_input, max_length=5000, num_return_sequences=1)[0]['generated_text']
|
48 |
+
return response
|
49 |
+
|
50 |
+
class UIUXWizard:
|
51 |
+
def __init__(self, model_manager: ModelManager, vector_store=None):
|
52 |
+
self.model_manager = model_manager
|
53 |
+
self.vector_store = vector_store
|
54 |
+
self.conversation_chain = ConversationChain(
|
55 |
+
llm=OpenAI(temperature=0.7),
|
56 |
+
memory=ConversationBufferMemory(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
)
|
58 |
|
59 |
+
async def start(self):
|
60 |
+
await self.model_manager.start()
|
61 |
+
|
62 |
+
async def stop(self):
|
63 |
+
await self.model_manager.stop()
|
64 |
+
|
65 |
+
def get_memory_response(self, query):
|
66 |
+
if self.vector_store is None:
|
67 |
+
return "No memory available."
|
68 |
+
else:
|
69 |
+
results = self.vector_store.similarity_search(query, k=3)
|
70 |
+
return "\n".join(results)
|
71 |
+
|
72 |
+
def get_conversation_response(self, query):
|
73 |
+
return self.conversation_chain.run(query)
|
74 |
+
|
75 |
+
# Define VersionControl class
|
76 |
+
class VersionControl:
|
77 |
+
def __init__(self, system_name: str):
|
78 |
+
self.system_name = system_name
|
79 |
+
|
80 |
+
async def start(self):
|
81 |
+
logging.info(f"Starting version control system: {self.system_name}")
|
82 |
+
await asyncio.sleep(1) # Simulate initialization time
|
83 |
+
|
84 |
+
async def stop(self):
|
85 |
+
logging.info(f"Stopping version control system: {self.system_name}")
|
86 |
+
|
87 |
+
# Define Documentation class
|
88 |
+
class Documentation:
|
89 |
+
def __init__(self, system_name: str):
|
90 |
+
self.system_name = system_name
|
91 |
+
|
92 |
+
async def start(self):
|
93 |
+
logging.info(f"Starting documentation system: {self.system_name}")
|
94 |
+
await asyncio.sleep(1) # Simulate initialization time
|
95 |
+
|
96 |
+
async def stop(self):
|
97 |
+
logging.info(f"Stopping documentation system: {self.system_name}")
|
98 |
+
|
99 |
+
class BuildAutomation:
|
100 |
+
def __init__(self, system_name: str):
|
101 |
+
self.system_name = system_name
|
102 |
+
|
103 |
+
async def start(self):
|
104 |
+
logging.info(f"Starting build automation system: {self.system_name}")
|
105 |
+
await asyncio.sleep(1) # Simulate initialization time
|
106 |
+
|
107 |
+
async def stop(self):
|
108 |
+
logging.info(f"Stopping build automation system: {self.system_name}")
|
109 |
+
|
110 |
+
# Define EliteDeveloperCluster class
|
111 |
+
class EliteDeveloperCluster:
|
112 |
+
def __init__(self, config: Dict[str, Any], model):
|
113 |
+
self.config = config
|
114 |
+
self.model_manager = ModelManager()
|
115 |
+
self.code_architect = CodeArchitect(self.model_manager, model)
|
116 |
+
self.uiux_wizard = UIUXWizard(self.model_manager)
|
117 |
+
self.version_control = VersionControl(config["version_control_system"])
|
118 |
+
self.documentation = Documentation(config["documentation_system"])
|
119 |
+
self.build_automation = BuildAutomation(config["build_automation_system"])
|
120 |
+
self.task_queue = asyncio.Queue()
|
121 |
+
|
122 |
+
async def start(self):
|
123 |
+
await self.code_architect.start()
|
124 |
+
await self.uiux_wizard.start()
|
125 |
+
await self.version_control.start()
|
126 |
+
await self.documentation.start()
|
127 |
+
await self.build_automation.start()
|
128 |
+
|
129 |
+
async def stop(self):
|
130 |
+
await self.code_architect.stop()
|
131 |
+
await self.uiux_wizard.stop()
|
132 |
+
await self.version_control.stop()
|
133 |
+
await self.documentation.stop()
|
134 |
+
await self.build_automation.stop()
|
135 |
+
|
136 |
+
async def process_task(self, task: Task):
|
137 |
+
if task.task_name == "generate_code":
|
138 |
+
response = await self.code_architect.generate_code(task.input_data)
|
139 |
+
return response
|
140 |
+
elif task.task_name == "get_memory_response":
|
141 |
+
response = self.uiux_wizard.get_memory_response(task.input_data)
|
142 |
+
return response
|
143 |
+
elif task.task_name == "get_conversation_response":
|
144 |
+
response = self.uiux_wizard.get_conversation_response(task.input_data)
|
145 |
+
return response
|
146 |
+
else:
|
147 |
+
return f"Unknown task: {task.task_name}"
|
148 |
+
|
149 |
+
async def process_tasks(self):
|
150 |
+
while True:
|
151 |
+
task = await self.task_queue.get()
|
152 |
+
response = await self.process_task(task)
|
153 |
+
logging.info(f"Processed task: {task.task_name} for agent: {task.agent_name}")
|
154 |
+
self.task_queue.task_done()
|
155 |
+
yield response
|
156 |
+
|
157 |
+
def route_request(self, query: str) -> str:
|
158 |
+
# TODO: Implement logic to determine the appropriate agent based on query
|
159 |
+
# For now, assume all requests are for the UIUXWizard
|
160 |
+
return self.uiux_wizard.get_conversation_response(query)
|
161 |
+
|
162 |
+
# Flask App for handling agent requests
|
163 |
+
app = Flask(__name__)
|
164 |
+
|
165 |
+
@app.route('/agent', methods=['POST'])
|
166 |
+
def agent_request():
|
167 |
+
data = request.get_json()
|
168 |
+
if data.get('input_value'):
|
169 |
+
# Process request from any agent (Agent 2, Agent 3, etc.)
|
170 |
+
task = Task(f"Process request from {data.get('agent_name', 'unknown agent')}", data.get('input_value'), data.get('agent_name', 'unknown agent'))
|
171 |
+
cluster.task_queue.put_nowait(task)
|
172 |
+
return jsonify({'response': 'Received input: from an agent, task added to queue.'})
|
173 |
+
else:
|
174 |
+
return jsonify({'response': 'Invalid input'})
|
175 |
|
176 |
+
# Chat Interface
|
177 |
+
def get_response(query: str) -> str:
|
178 |
+
return cluster.route_request(query)
|
|
|
|
|
|
|
179 |
|
180 |
+
def response_streaming(text: str):
|
181 |
+
try:
|
182 |
+
for char in text:
|
183 |
+
yield char
|
184 |
+
except Exception as e:
|
185 |
+
logging.error(f"Error in response streaming: {e}")
|
186 |
+
yield "Error occurred while streaming the response."
|
187 |
+
|
188 |
+
class ChatApp:
|
189 |
+
def __init__(self, cluster: EliteDeveloperCluster):
|
190 |
+
self.cluster = cluster
|
191 |
+
|
192 |
+
async def start(self):
|
193 |
+
await self.cluster.start()
|
194 |
+
|
195 |
+
async def stop(self):
|
196 |
+
await self.cluster.stop()
|
197 |
+
|
198 |
+
async def handle_request(self, query: str) -> str:
|
199 |
+
response = await self.cluster.process_tasks()
|
200 |
+
return response
|
201 |
+
|
202 |
+
# Configuration
|
203 |
+
config = {
|
204 |
+
"version_control_system": "Git",
|
205 |
+
"testing_framework": "PyTest",
|
206 |
+
"documentation_system": "Sphinx",
|
207 |
+
"build_automation_system": "Jenkins",
|
208 |
+
"redis_host": "localhost",
|
209 |
+
"redis_port": 6379,
|
210 |
+
"max_workers": 4,
|
211 |
+
}
|
212 |
|
213 |
+
if __name__ == "__main__":
|
214 |
+
# Initialize the cluster
|
215 |
+
cluster = EliteDeveloperCluster(config, model=None)
|
|
|
|
|
|
|
216 |
|
217 |
+
# Start the cluster and task processing loop
|
218 |
+
asyncio.run(cluster.start())
|
219 |
+
asyncio.run(cluster.process_tasks())
|
220 |
|
221 |
+
# Run Flask app
|
222 |
+
app.run(debug=True)
|