import gradio as gr import json import logging from enum import Enum, auto from typing import Protocol, List, Dict, Any from dataclasses import dataclass, field from datetime import datetime import difflib import pytest from concurrent.futures import ThreadPoolExecutor import asyncio # Initialize logger logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) @dataclass class Config: """Configuration class for the agent system""" rag_system_path: str max_workers: int = 10 log_level: str = "INFO" model_settings: Dict[str, Any] = field(default_factory=dict) api_keys: Dict[str, str] = field(default_factory=dict) def __post_init__(self): """Validate configuration after initialization""" if not hasattr(self, 'rag_system_path'): raise ValueError("RAG system path must be specified in config") class RAGSystem: """Retrieval Augmented Generation System""" def __init__(self, config: Config): self.config = config self.model_settings = config.model_settings async def generate_reasoning(self, prompt: str) -> str: """Generate reasoning based on the provided prompt""" try: # Placeholder for actual RAG implementation return f"Generated reasoning for: {prompt}" except Exception as e: logger.error(f"Error in RAG system: {e}") raise class AgentRole(Enum): ARCHITECT = auto() FRONTEND = auto() BACKEND = auto() DATABASE = auto() TESTER = auto() REVIEWER = auto() DEPLOYER = auto() @dataclass class AgentDecision: agent: 'Agent' decision: str confidence: float reasoning: str timestamp: datetime = field(default_factory=datetime.now) dependencies: List['AgentDecision'] = field(default_factory=list) class AgentProtocol(Protocol): async def decide(self, context: Dict[str, Any]) -> AgentDecision: ... async def validate(self, decision: AgentDecision) -> bool: ... async def implement(self, decision: AgentDecision) -> Any: ... async def test(self, implementation: Any) -> bool: ... @dataclass class Agent: role: AgentRole name: str autonomy_level: float # 0-10 expertise: List[str] confidence_threshold: float = 0.7 rag_system: RAGSystem = None async def reason(self, context: Dict[str, Any]) -> str: """Generate reasoning based on context and expertise""" if not self.rag_system: raise ValueError("RAG system not initialized") prompt = f""" As {self.name}, a {self.role.name} expert with expertise in {', '.join(self.expertise)}, analyze the following context and provide reasoning: Context: {json.dumps(context, indent=2)} Consider: 1. Required components and their interactions 2. Potential challenges and solutions 3. Best practices and patterns 4. Security and performance implications Reasoning: """ return await self.rag_system.generate_reasoning(prompt) async def decide(self, context: Dict[str, Any]) -> AgentDecision: """Make a decision based on context and expertise""" reasoning = await self.reason(context) confidence = 0.8 # Placeholder for actual confidence calculation return AgentDecision( agent=self, decision=f"Decision based on {reasoning}", confidence=confidence, reasoning=reasoning ) class AgentSystem: def __init__(self, config: Config): self.config = config self.autonomy_level = 0.0 # 0-10 self.rag_system = RAGSystem(config) self.agents: Dict[AgentRole, Agent] = self._initialize_agents() self.decision_history: List[AgentDecision] = [] self.executor = ThreadPoolExecutor(max_workers=config.max_workers) self.validator = AgentValidator() self.tester = AgentTester() def _initialize_agents(self) -> Dict[AgentRole, Agent]: agents = { AgentRole.ARCHITECT: Agent( role=AgentRole.ARCHITECT, name="System Architect", autonomy_level=self.autonomy_level, expertise=["system design", "architecture patterns", "integration"] ), AgentRole.FRONTEND: Agent( role=AgentRole.FRONTEND, name="Frontend Developer", autonomy_level=self.autonomy_level, expertise=["UI/UX", "React", "Vue", "Angular"] ), AgentRole.BACKEND: Agent( role=AgentRole.BACKEND, name="Backend Developer", autonomy_level=self.autonomy_level, expertise=["API design", "database", "security"] ), AgentRole.TESTER: Agent( role=AgentRole.TESTER, name="Quality Assurance", autonomy_level=self.autonomy_level, expertise=["testing", "automation", "quality assurance"] ), AgentRole.REVIEWER: Agent( role=AgentRole.REVIEWER, name="Code Reviewer", autonomy_level=self.autonomy_level, expertise=["code quality", "best practices", "security"] ), } # Initialize RAG system for each agent for agent in agents.values(): agent.rag_system = self.rag_system return agents async def set_autonomy_level(self, level: float) -> None: """Update autonomy level for all agents""" self.autonomy_level = max(0.0, min(10.0, level)) for agent in self.agents.values(): agent.autonomy_level = self.autonomy_level async def process_request(self, description: str, context: Dict[str, Any] = None) -> Dict[str, Any]: """Process a user request with current autonomy level""" try: context = context or {} context['description'] = description context['autonomy_level'] = self.autonomy_level # Start with architect's decision arch_decision = await self.agents[AgentRole.ARCHITECT].decide(context) self.decision_history.append(arch_decision) if self.autonomy_level < 3: # Low autonomy: Wait for user confirmation return { 'status': 'pending_confirmation', 'decision': arch_decision, 'next_steps': self._get_next_steps(arch_decision) } # Medium to high autonomy: Proceed with implementation implementation_plan = await self._create_implementation_plan(arch_decision) if self.autonomy_level >= 7: # High autonomy: Automatic implementation and testing return await self._automated_implementation(implementation_plan) # Medium autonomy: Return plan for user review return { 'status': 'pending_review', 'plan': implementation_plan, 'decisions': self.decision_history } except Exception as e: logger.error(f"Error in request processing: {e}") return {'status': 'error', 'message': str(e)} async def _create_implementation_plan(self, arch_decision: AgentDecision) -> Dict[str, Any]: """Create detailed implementation plan based on architect's decision""" tasks = [] # Frontend tasks if 'frontend' in arch_decision.decision.lower(): tasks.append(self._create_frontend_tasks(arch_decision)) # Backend tasks if 'backend' in arch_decision.decision.lower(): tasks.append(self._create_backend_tasks(arch_decision)) # Testing tasks tasks.append(self._create_testing_tasks(arch_decision)) return { 'tasks': await asyncio.gather(*tasks), 'dependencies': arch_decision.dependencies, 'estimated_time': self._estimate_implementation_time(tasks) } async def _create_frontend_tasks(self, arch_decision: AgentDecision) -> Dict[str, Any]: """Create frontend implementation tasks""" return { 'type': 'frontend', 'components': [], # Add component definitions 'dependencies': arch_decision.dependencies } async def _create_backend_tasks(self, arch_decision: AgentDecision) -> Dict[str, Any]: """Create backend implementation tasks""" return { 'type': 'backend', 'endpoints': [], # Add endpoint definitions 'dependencies': arch_decision.dependencies } async def _create_testing_tasks(self, arch_decision: AgentDecision) -> Dict[str, Any]: """Create testing tasks""" return { 'type': 'testing', 'test_cases': [], # Add test case definitions 'dependencies': arch_decision.dependencies } def _estimate_implementation_time(self, tasks: List[Dict[str, Any]]) -> float: """Estimate implementation time based on tasks""" return sum(len(task.get('components', [])) + len(task.get('endpoints', [])) for task in tasks) * 2.0 # hours per task async def _automated_implementation(self, plan: Dict[str, Any]) -> Dict[str, Any]: """Execute implementation plan automatically""" results = { 'frontend': None, 'backend': None, 'tests': None, 'review': None } try: # Parallel implementation of frontend and backend impl_tasks = [] if 'frontend' in plan['tasks']: impl_tasks.append(self._implement_frontend(plan['tasks']['frontend'])) if 'backend' in plan['tasks']: impl_tasks.append(self._implement_backend(plan['tasks']['backend'])) implementations = await asyncio.gather(*impl_tasks) # Testing test_results = await self.agents[AgentRole.TESTER].test(implementations) # Code review review_results = await self.agents[AgentRole.REVIEWER].validate({ 'implementations': implementations, 'test_results': test_results }) return { 'status': 'completed', 'implementations': implementations, 'test_results': test_results, 'review': review_results, 'decisions': self.decision_history } except Exception as e: return { 'status': 'error', 'message': str(e), 'partial_results': results } async def _implement_frontend(self, tasks: Dict[str, Any]) -> Dict[str, Any]: """Implement frontend components""" return {'components': [], 'status': 'implemented'} async def _implement_backend(self, tasks: Dict[str, Any]) -> Dict[str, Any]: """Implement backend components""" return {'endpoints': [], 'status': 'implemented'} def _get_next_steps(self, decision: AgentDecision) -> List[str]: """Get next steps based on decision""" return [ f"Review {decision.decision}", "Provide feedback on the proposed approach", "Approve or request changes" ] async def _handle_implementation_failure(self, error: Exception, context: Dict[str, Any]) -> Dict[str, Any]: """Handle implementation failures with adaptive response""" try: # Analyze error error_analysis = await self.agents[AgentRole.REVIEWER].reason({ 'error': str(error), 'context': context }) # Determine correction strategy if self.autonomy_level >= 8: # High autonomy: Attempt automatic correction correction = await self._attempt_automatic_correction(error_analysis) if correction['success']: return await self.process_request(context['description'], correction['context']) return { 'status': 'failure', 'error': str(error), 'analysis': error_analysis, 'suggested_corrections': self._suggest_corrections(error_analysis) } except Exception as e: logger.error(f"Error handling implementation failure: {e}") return {'status': 'critical_error', 'message': str(e)} async def _attempt_automatic_correction(self, error_analysis: Dict[str, Any]) -> Dict[str, Any]: """Attempt to automatically correct implementation issues""" return { 'success': False, 'context': {}, 'message': 'Automatic correction not implemented' } def _suggest_corrections(self, error_analysis: Dict[str, Any]) -> List[str]: """Generate suggested corrections based on error analysis""" return [ "Review error details", "Check implementation requirements", "Verify dependencies" ] class AgentTester: def __init__(self): self.test_suites = { 'frontend': self._test_frontend, 'backend': self._test_backend, 'integration': self._test_integration } async def _test_frontend(self, implementation: Dict[str, Any]) -> Dict[str, Any]: """Run frontend tests""" results = { 'passed': [], 'failed': [], 'warnings': [] } # Component rendering tests for component in implementation.get('components', []): try: # Test component rendering result = await self._test_component_render(component) if result['success']: results['passed'].append(f"Component {component['name']} renders correctly") else: results['failed'].append(f"Component {component['name']}: {result['error']}") except Exception as e: results['failed'].append(f"Error testing {component['name']}: {str(e)}") return results async def _test_backend(self, implementation: Dict[str, Any]) -> Dict[str, Any]: """Run backend tests""" results = { 'passed': [], 'failed': [], 'warnings': [] } # API endpoint tests for endpoint in implementation.get('endpoints', []): try: # Test endpoint functionality result = await self._test_endpoint(endpoint) if result['success']: results['passed'].append(f"Endpoint {endpoint['path']} works correctly") else: results['failed'].append(f"Endpoint {endpoint['path']}: {result['error']}") except Exception as e: results['failed'].append(f"Error testing {endpoint['path']}: {str(e)}") return results async def _test_integration(self, implementation: Dict[str, Any]) -> Dict[str, Any]: """Run integration tests""" results = { 'passed': [], 'failed': [], 'warnings': [] } # Test frontend-backend integration try: result = await self._test_frontend_backend_integration(implementation) if result['success']: results['passed'].append("Frontend-Backend integration successful") else: results['failed'].append(f"Integration error: {result['error']}") except Exception as e: results['failed'].append(f"Integration test error: {str(e)}") return results async def _test_component_render(self, component: Dict[str, Any]) -> Dict[str, Any]: """Test component rendering""" # Placeholder for actual component rendering test return {'success': True, 'error': None} async def _test_endpoint(self, endpoint: Dict[str, Any]) -> Dict[str, Any]: """Test endpoint functionality""" # Placeholder for actual endpoint test return {'success': True, 'error': None} async def _test_frontend_backend_integration(self, implementation: Dict[str, Any]) -> Dict[str, Any]: """Test frontend-backend integration""" # Placeholder for actual integration test implementation try: # Add your integration test logic here # For example: # 1. Test API endpoints with frontend components # 2. Verify data flow between frontend and backend # 3. Check authentication and authorization return { 'success': True, 'error': None, 'details': { 'api_connectivity': 'OK', 'data_flow': 'OK', 'auth_flow': 'OK' } } except Exception as e: return { 'success': False, 'error': str(e), 'details': None } async def _test_backend(self, implementation: Dict[str, Any]) -> Dict[str, Any]: """Run backend tests""" results = { 'passed': [], 'failed': [], 'warnings': [] } # API endpoint tests for endpoint in implementation.get('endpoints', []): try: # Test endpoint functionality result = await self._test_endpoint(endpoint) if result['success']: results['passed'].append(f"Endpoint {endpoint['path']} works correctly") else: results['failed'].append(f"Endpoint {endpoint['path']}: {result['error']}") except Exception as e: results['failed'].append(f"Error testing {endpoint['path']}: {str(e)}") return results async def _test_integration(self, implementation: Dict[str, Any]) -> Dict[str, Any]: """Run integration tests""" results = { 'passed': [], 'failed': [], 'warnings': [] } # Test frontend-backend integration try: result = await self._test_frontend_backend_integration(implementation) if result['success']: results['passed'].append("Frontend-Backend integration successful") else: results['failed'].append(f"Integration error: {result['error']}") except Exception as e: results['failed'].append(f"Integration test error: {str(e)}") return results async def _test_component_render(self, component: Dict[str, Any]) -> Dict[str, Any]: """Test component rendering""" # Placeholder for actual component rendering test return {'success': True, 'error': None} async def _test_endpoint(self, endpoint: Dict[str, Any]) -> Dict[str, Any]: """Test endpoint functionality""" # Placeholder for actual endpoint test return {'success': True, 'error': None} async def _test_component_render(self, component: Dict[str, Any]) -> Dict[str, Any]: """Test component rendering""" # Placeholder for actual component rendering test return {'success': True, 'error': None} async def _test_endpoint(self, endpoint: Dict[str, Any]) -> Dict[str, Any]: """Test endpoint functionality""" # Placeholder for actual endpoint test return {'success': True, 'error': None} async def _test_frontend_backend_integration(self, implementation: Dict[str, Any]) -> Dict[str, Any]: """Test frontend-backend integration""" # Placeholder for actual integration test return {'success': True, 'error': None} class AgentValidator: def __init__(self): self.validators = { 'code_quality': self._validate_code_quality, 'security': self._validate_security, 'performance': self._validate_performance } async def _validate_code_quality(self, code: str) -> Dict[str, Any]: """Validate code quality metrics""" results = { 'passed': [], 'failed': [], 'warnings': [] } # Add code quality validation logic here return results async def _validate_security(self, implementation: Dict[str, Any]) -> Dict[str, Any]: """Validate security best practices""" results = { 'passed': [], 'failed': [], 'warnings': [] } # Add security validation logic here return results async def _validate_performance(self, implementation: Dict[str, Any]) -> Dict[str, Any]: """Validate performance metrics""" results = { 'passed': [], 'failed': [], 'warnings': [] } # Add performance validation logic here return results async def validate(self, implementation: Dict[str, Any]) -> Dict[str, Any]: """Run all validators on the implementation""" results = { 'code_quality': await self._validate_code_quality(implementation.get('code', '')), 'security': await self._validate_security(implementation), 'performance': await self._validate_performance(implementation) } return results # Example usage if __name__ == "__main__": async def main(): config = Config( rag_system_path="/path/to/rag", max_workers=10, log_level="INFO", model_settings={}, api_keys={} ) agent_system = AgentSystem(config) await agent_system.set_autonomy_level(5.0) result = await agent_system.process_request( description="Create a new web application", context={"requirements": ["user authentication", "dashboard", "API"]} ) print(json.dumps(result, indent=2)) # Run the async main function asyncio.run(main())