File size: 14,818 Bytes
0ebed5d
 
 
895945e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3fe777
895945e
 
 
 
 
 
 
 
 
0ebed5d
 
895945e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import os
import subprocess
import random
import time
from typing import Dict, List, Tuple
from datetime import datetime
import logging
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, huggingface_hub
from huggingface_hub import InferenceClient, cached_download, Repository, HfApi
from IPython.display import display, HTML
import streamlit.components.v1 as components
import tempfile
import shutil

# --- Configuration ---
VERBOSE = True
MAX_HISTORY = 5
MAX_TOKENS = 2048
TEMPERATURE = 0.7
TOP_P = 0.8
REPETITION_PENALTY = 1.5
DEFAULT_PROJECT_PATH = "./my-hf-project"  # Default project directory

# --- Logging Setup ---
logging.basicConfig(
    filename="app.log",
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
)

# --- Global Variables ---
current_model = None  # Store the currently loaded model
repo = None  # Store the Hugging Face Repository object
model_descriptions = {}  # Store model descriptions
project_path = DEFAULT_PROJECT_PATH  # Default project path

# --- Functions ---


def load_model(model_name: str):
    """Loads a language model and fetches its description."""
    global current_model, model_descriptions
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        current_model = pipeline(
            "text-generation",
            model=model_name,
            tokenizer=tokenizer,
            model_kwargs={"load_in_8bit": True},
        )
        # Fetch and store the model description
        api = HfApi()
        model_info = api.model_info(model_name)
        model_descriptions[model_name] = model_info.pipeline_tag
        return f"Successfully loaded model: {model_name}"
    except Exception as e:
        return f"Error loading model: {str(e)}"


def run_command(command: str, project_path: str = None) -> str:
    """Executes a shell command and returns the output."""
    try:
        if project_path:
            process = subprocess.Popen(
                command,
                shell=True,
                cwd=project_path,
                stdout=subprocess.PIPE,
                stderr=subprocess.PIPE,
            )
        else:
            process = subprocess.Popen(
                command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE
            )
        output, error = process.communicate()
        if error:
            return f"""Error: {error.decode('utf-8')}"""
        return output.decode("utf-8")
    except Exception as e:
        return f"""Error executing command: {str(e)}"""


def create_project(project_name: str, project_path: str = DEFAULT_PROJECT_PATH):
    """Creates a new Hugging Face project."""
    global repo, project_path
    try:
        if os.path.exists(project_path):
            return f"""Error: Directory '{project_path}' already exists!"""
        # Create the repository
        repo = Repository(local_dir=project_path, clone_from=None)
        repo.git_init()
        # Add basic files (optional, can customize this)
        with open(os.path.join(project_path, "README.md"), "w") as f:
            f.write(f"{project_name}\n\nA new Hugging Face project.")
        # Stage all changes
        repo.git_add(pattern="*")
        repo.git_commit(commit_message="Initial commit")
        project_path = os.path.join(project_path, project_name)  # Update project path
        return f"""Hugging Face project '{project_name}' created successfully at '{project_path}'"""
    except Exception as e:
        return f"""Error creating Hugging Face project: {str(e)}"""


def list_files(project_path: str = DEFAULT_PROJECT_PATH) -> str:
    """Lists files in the project directory."""
    try:
        files = os.listdir(project_path)
        if not files:
            return "Project directory is empty."
        return "\n".join(files)
    except Exception as e:
        return f"""Error listing project files: {str(e)}"""


def read_file(file_path: str, project_path: str = DEFAULT_PROJECT_PATH) -> str:
    """Reads and returns the content of a file in the project."""
    try:
        full_path = os.path.join(project_path, file_path)
        with open(full_path, "r") as f:
            content = f.read()
        return content
    except Exception as e:
        return f"""Error reading file: {str(e)}"""


def write_file(file_path: str, content: str, project_path: str = DEFAULT_PROJECT_PATH):
    """Writes content to a file in the project."""
    try:
        full_path = os.path.join(project_path, file_path)
        with open(full_path, "w") as f:
            f.write(content)
        return f"Successfully wrote to '{full_path}'"
    except Exception as e:
        return f"""Error writing to file: {str(e)}"""


def preview(project_path: str = DEFAULT_PROJECT_PATH):
    """Provides a preview of the project, if applicable."""
    # Assuming a simple HTML preview for now
    try:
        index_html_path = os.path.join(project_path, "index.html")
        if os.path.exists(index_html_path):
            with open(index_html_path, "r") as f:
                html_content = f.read()
            display(HTML(html_content))
            return "Previewing 'index.html'"
        else:
            return "No 'index.html' found for preview."
    except Exception as e:
        return f"""Error previewing project: {str(e)}"""


def generate_response(
    message: str,
    history: List[Tuple[str, str]],
    agent_name: str,
    sys_prompt: str,
    temperature: float,
    max_new_tokens: int,
    top_p: float,
    repetition_penalty: float,
) -> str:
    """Generates a response using the loaded model."""
    if not current_model:
        return "Please load a model first."
    conversation = [{"role": "system", "content": sys_prompt}]
    for message, response in history:
        conversation.append({"role": "user", "content": message})
        conversation.append({"role": "assistant", "content": response})
    conversation.append({"role": "user", "content": message})
    response = current_model.generate(
        conversation,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
    )
    return response.text.strip()


def run_chat(
    purpose: str,
    message: str,
    agent_name: str,
    sys_prompt: str,
    temperature: float,
    max_new_tokens: int,
    top_p: float,
    repetition_penalty: float,
    history: List[Tuple[str, str]],
) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
    """Handles the chat interaction."""
    if not current_model:
        return [(history, history), "Please load a model first."]
    response = generate_response(
        message,
        history,
        agent_name,
        sys_prompt,
        temperature,
        max_new_tokens,
        top_p,
        repetition_penalty,
    )
    history.append((message, response))
    return [(history, history), response]


def update_model_dropdown(category):
    """Populates the model dropdown based on the selected category."""
    models = []
    api = HfApi()
    for model in api.list_models():
        if model.pipeline_tag == category:
            models.append(model.modelId)
    return gr.Dropdown.update(choices=models)


def display_model_description(model_name):
    """Displays the description of the selected model."""
    global model_descriptions
    if model_name in model_descriptions:
        return model_descriptions[model_name]
    else:
        return "Model description not available."


def load_selected_model(model_name):
    """Loads the selected model."""
    global current_model
    load_output = load_model(model_name)
    if current_model:
        return f"""Model '{model_name}' loaded successfully!"""
    else:
        return f"""Error loading model '{model_name}'"""


def create_project_handler(project_name):
    """Handles the creation of a new project."""
    return create_project(project_name)


def list_files_handler():
    """Handles the listing of files in the project directory."""
    return list_files(project_path)


def read_file_handler(file_path):
    """Handles the reading of a file in the project."""
    return read_file(file_path, project_path)


def write_file_handler(file_path, file_content):
    """Handles the writing of content to a file in the project."""
    return write_file(file_path, file_content, project_path)


def run_command_handler(command):
    """Handles the execution of a shell command."""
    return run_command(command, project_path)


def preview_handler():
    """Handles the preview of the project."""
    return preview(project_path)


def main():
    """Main function to launch the Gradio interface."""
    with gr.Blocks() as demo:
        gr.Markdown("## IDEvIII: Your Hugging Face No-Code App Builder")
        # --- Model Selection ---
        with gr.Tab("Model"):
            model_categories = gr.Dropdown(
                choices=[
                    "Text Generation",
                    "Text Summarization",
                    "Code Generation",
                    "Translation",
                    "Question Answering",
                ],
                label="Model Category",
                value="Text Generation",
            )
            model_name = gr.Dropdown(
                choices=[],  # Initially empty, will be populated based on category
                label="Hugging Face Model Name",
            )
            load_button = gr.Button("Load Model")
            load_output = gr.Textbox(label="Output")
            model_description = gr.Markdown(label="Model Description")

            model_categories.change(
                fn=update_model_dropdown, inputs=model_categories, outputs=model_name
            )
            model_name.change(
                fn=display_model_description, inputs=model_name, outputs=model_description
            )
            load_button.click(
                load_selected_model, inputs=model_name, outputs=load_output
            )

        # --- Chat Interface ---
        with gr.Tab("Chat"):
            chatbot = gr.Chatbot(
                show_label=False,
                show_share_button=False,
                show_copy_button=True,
                likeable=True,
            )
            message = gr.Textbox(
                label="Enter your message", placeholder="Ask me anything!"
            )
            purpose = gr.Textbox(
                label="Purpose", placeholder="What is the purpose of this interaction?"
            )
            agent_name = gr.Textbox(
                label="Agent Name", value="Generic Agent", interactive=True
            )
            sys_prompt = gr.Textbox(
                label="System Prompt", max_lines=1, interactive=True
            )
            temperature = gr.Slider(
                label="Temperature",
                value=TEMPERATURE,
                minimum=0.0,
                maximum=1.0,
                step=0.05,
                interactive=True,
                info="Higher values produce more creative text.",
            )
            max_new_tokens = gr.Slider(
                label="Max new tokens",
                value=MAX_TOKENS,
                minimum=0,
                maximum=1048 * 10,
                step=64,
                interactive=True,
                info="The maximum number of new tokens to generate.",
            )
            top_p = gr.Slider(
                label="Top-p (nucleus sampling)",
                value=TOP_P,
                minimum=0,
                maximum=1,
                step=0.05,
                interactive=True,
                info="Higher values sample more low-probability tokens.",
            )
            repetition_penalty = gr.Slider(
                label="Repetition penalty",
                value=REPETITION_PENALTY,
                minimum=1.0,
                maximum=2.0,
                step=0.05,
                interactive=True,
                info="Penalize repeated tokens.",
            )
            submit_button = gr.Button(value="Send")
            history = gr.State([])
            submit_button.click(
                run_chat,
                inputs=[
                    purpose,
                    message,
                    agent_name,
                    sys_prompt,
                    temperature,
                    max_new_tokens,
                    top_p,
                    repetition_penalty,
                    history,
                ],
                outputs=[chatbot, history],
            )

        # --- Project Management ---
        with gr.Tab("Project"):
            project_name = gr.Textbox(label="Project Name")
            create_project_button = gr.Button("Create Project")
            create_project_output = gr.Textbox(label="Output")
            list_files_button = gr.Button("List Files")
            list_files_output = gr.Textbox(label="Output")
            file_path = gr.Textbox(label="File Path")
            read_file_button = gr.Button("Read File")
            read_file_output = gr.Textbox(label="Output")
            file_content = gr.Textbox(label="File Content")
            write_file_button = gr.Button("Write File")
            write_file_output = gr.Textbox(label="Output")
            run_command_input = gr.Textbox(label="Command")
            run_command_button = gr.Button("Run Command")
            run_command_output = gr.Textbox(label="Output")
            preview_button = gr.Button("Preview")
            preview_output = gr.Textbox(label="Output")

            create_project_button.click(
                create_project_handler, inputs=project_name, outputs=create_project_output
            )
            list_files_button.click(
                list_files_handler, outputs=list_files_output
            )
            read_file_button.click(
                read_file_handler, inputs=file_path, outputs=read_file_output
            )
            write_file_button.click(
                write_file_handler,
                inputs=[file_path, file_content],
                outputs=write_file_output,
            )
            run_command_button.click(
                run_command_handler, inputs=run_command_input, outputs=run_command_output
            )
            preview_button.click(
                preview_handler, outputs=preview_output
            )

        # --- Custom Server Settings ---
        server_name = "0.0.0.0"  # Listen on available network interfaces
        server_port = 7860  # Choose an available port
        share_gradio_link = True  # Share a public URL for the app

        # --- Launch the Interface ---
        demo.launch(
            server_name=server_name,
            server_port=server_port,
            share=share_gradio_link,
        )


if __name__ == "__main__":
    main()