Spaces:
Running
Running
File size: 14,818 Bytes
0ebed5d 895945e e3fe777 895945e 0ebed5d 895945e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import os
import subprocess
import random
import time
from typing import Dict, List, Tuple
from datetime import datetime
import logging
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, huggingface_hub
from huggingface_hub import InferenceClient, cached_download, Repository, HfApi
from IPython.display import display, HTML
import streamlit.components.v1 as components
import tempfile
import shutil
# --- Configuration ---
VERBOSE = True
MAX_HISTORY = 5
MAX_TOKENS = 2048
TEMPERATURE = 0.7
TOP_P = 0.8
REPETITION_PENALTY = 1.5
DEFAULT_PROJECT_PATH = "./my-hf-project" # Default project directory
# --- Logging Setup ---
logging.basicConfig(
filename="app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
# --- Global Variables ---
current_model = None # Store the currently loaded model
repo = None # Store the Hugging Face Repository object
model_descriptions = {} # Store model descriptions
project_path = DEFAULT_PROJECT_PATH # Default project path
# --- Functions ---
def load_model(model_name: str):
"""Loads a language model and fetches its description."""
global current_model, model_descriptions
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
current_model = pipeline(
"text-generation",
model=model_name,
tokenizer=tokenizer,
model_kwargs={"load_in_8bit": True},
)
# Fetch and store the model description
api = HfApi()
model_info = api.model_info(model_name)
model_descriptions[model_name] = model_info.pipeline_tag
return f"Successfully loaded model: {model_name}"
except Exception as e:
return f"Error loading model: {str(e)}"
def run_command(command: str, project_path: str = None) -> str:
"""Executes a shell command and returns the output."""
try:
if project_path:
process = subprocess.Popen(
command,
shell=True,
cwd=project_path,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
else:
process = subprocess.Popen(
command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
output, error = process.communicate()
if error:
return f"""Error: {error.decode('utf-8')}"""
return output.decode("utf-8")
except Exception as e:
return f"""Error executing command: {str(e)}"""
def create_project(project_name: str, project_path: str = DEFAULT_PROJECT_PATH):
"""Creates a new Hugging Face project."""
global repo, project_path
try:
if os.path.exists(project_path):
return f"""Error: Directory '{project_path}' already exists!"""
# Create the repository
repo = Repository(local_dir=project_path, clone_from=None)
repo.git_init()
# Add basic files (optional, can customize this)
with open(os.path.join(project_path, "README.md"), "w") as f:
f.write(f"{project_name}\n\nA new Hugging Face project.")
# Stage all changes
repo.git_add(pattern="*")
repo.git_commit(commit_message="Initial commit")
project_path = os.path.join(project_path, project_name) # Update project path
return f"""Hugging Face project '{project_name}' created successfully at '{project_path}'"""
except Exception as e:
return f"""Error creating Hugging Face project: {str(e)}"""
def list_files(project_path: str = DEFAULT_PROJECT_PATH) -> str:
"""Lists files in the project directory."""
try:
files = os.listdir(project_path)
if not files:
return "Project directory is empty."
return "\n".join(files)
except Exception as e:
return f"""Error listing project files: {str(e)}"""
def read_file(file_path: str, project_path: str = DEFAULT_PROJECT_PATH) -> str:
"""Reads and returns the content of a file in the project."""
try:
full_path = os.path.join(project_path, file_path)
with open(full_path, "r") as f:
content = f.read()
return content
except Exception as e:
return f"""Error reading file: {str(e)}"""
def write_file(file_path: str, content: str, project_path: str = DEFAULT_PROJECT_PATH):
"""Writes content to a file in the project."""
try:
full_path = os.path.join(project_path, file_path)
with open(full_path, "w") as f:
f.write(content)
return f"Successfully wrote to '{full_path}'"
except Exception as e:
return f"""Error writing to file: {str(e)}"""
def preview(project_path: str = DEFAULT_PROJECT_PATH):
"""Provides a preview of the project, if applicable."""
# Assuming a simple HTML preview for now
try:
index_html_path = os.path.join(project_path, "index.html")
if os.path.exists(index_html_path):
with open(index_html_path, "r") as f:
html_content = f.read()
display(HTML(html_content))
return "Previewing 'index.html'"
else:
return "No 'index.html' found for preview."
except Exception as e:
return f"""Error previewing project: {str(e)}"""
def generate_response(
message: str,
history: List[Tuple[str, str]],
agent_name: str,
sys_prompt: str,
temperature: float,
max_new_tokens: int,
top_p: float,
repetition_penalty: float,
) -> str:
"""Generates a response using the loaded model."""
if not current_model:
return "Please load a model first."
conversation = [{"role": "system", "content": sys_prompt}]
for message, response in history:
conversation.append({"role": "user", "content": message})
conversation.append({"role": "assistant", "content": response})
conversation.append({"role": "user", "content": message})
response = current_model.generate(
conversation,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
return response.text.strip()
def run_chat(
purpose: str,
message: str,
agent_name: str,
sys_prompt: str,
temperature: float,
max_new_tokens: int,
top_p: float,
repetition_penalty: float,
history: List[Tuple[str, str]],
) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
"""Handles the chat interaction."""
if not current_model:
return [(history, history), "Please load a model first."]
response = generate_response(
message,
history,
agent_name,
sys_prompt,
temperature,
max_new_tokens,
top_p,
repetition_penalty,
)
history.append((message, response))
return [(history, history), response]
def update_model_dropdown(category):
"""Populates the model dropdown based on the selected category."""
models = []
api = HfApi()
for model in api.list_models():
if model.pipeline_tag == category:
models.append(model.modelId)
return gr.Dropdown.update(choices=models)
def display_model_description(model_name):
"""Displays the description of the selected model."""
global model_descriptions
if model_name in model_descriptions:
return model_descriptions[model_name]
else:
return "Model description not available."
def load_selected_model(model_name):
"""Loads the selected model."""
global current_model
load_output = load_model(model_name)
if current_model:
return f"""Model '{model_name}' loaded successfully!"""
else:
return f"""Error loading model '{model_name}'"""
def create_project_handler(project_name):
"""Handles the creation of a new project."""
return create_project(project_name)
def list_files_handler():
"""Handles the listing of files in the project directory."""
return list_files(project_path)
def read_file_handler(file_path):
"""Handles the reading of a file in the project."""
return read_file(file_path, project_path)
def write_file_handler(file_path, file_content):
"""Handles the writing of content to a file in the project."""
return write_file(file_path, file_content, project_path)
def run_command_handler(command):
"""Handles the execution of a shell command."""
return run_command(command, project_path)
def preview_handler():
"""Handles the preview of the project."""
return preview(project_path)
def main():
"""Main function to launch the Gradio interface."""
with gr.Blocks() as demo:
gr.Markdown("## IDEvIII: Your Hugging Face No-Code App Builder")
# --- Model Selection ---
with gr.Tab("Model"):
model_categories = gr.Dropdown(
choices=[
"Text Generation",
"Text Summarization",
"Code Generation",
"Translation",
"Question Answering",
],
label="Model Category",
value="Text Generation",
)
model_name = gr.Dropdown(
choices=[], # Initially empty, will be populated based on category
label="Hugging Face Model Name",
)
load_button = gr.Button("Load Model")
load_output = gr.Textbox(label="Output")
model_description = gr.Markdown(label="Model Description")
model_categories.change(
fn=update_model_dropdown, inputs=model_categories, outputs=model_name
)
model_name.change(
fn=display_model_description, inputs=model_name, outputs=model_description
)
load_button.click(
load_selected_model, inputs=model_name, outputs=load_output
)
# --- Chat Interface ---
with gr.Tab("Chat"):
chatbot = gr.Chatbot(
show_label=False,
show_share_button=False,
show_copy_button=True,
likeable=True,
)
message = gr.Textbox(
label="Enter your message", placeholder="Ask me anything!"
)
purpose = gr.Textbox(
label="Purpose", placeholder="What is the purpose of this interaction?"
)
agent_name = gr.Textbox(
label="Agent Name", value="Generic Agent", interactive=True
)
sys_prompt = gr.Textbox(
label="System Prompt", max_lines=1, interactive=True
)
temperature = gr.Slider(
label="Temperature",
value=TEMPERATURE,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more creative text.",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=MAX_TOKENS,
minimum=0,
maximum=1048 * 10,
step=64,
interactive=True,
info="The maximum number of new tokens to generate.",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=TOP_P,
minimum=0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens.",
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
value=REPETITION_PENALTY,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens.",
)
submit_button = gr.Button(value="Send")
history = gr.State([])
submit_button.click(
run_chat,
inputs=[
purpose,
message,
agent_name,
sys_prompt,
temperature,
max_new_tokens,
top_p,
repetition_penalty,
history,
],
outputs=[chatbot, history],
)
# --- Project Management ---
with gr.Tab("Project"):
project_name = gr.Textbox(label="Project Name")
create_project_button = gr.Button("Create Project")
create_project_output = gr.Textbox(label="Output")
list_files_button = gr.Button("List Files")
list_files_output = gr.Textbox(label="Output")
file_path = gr.Textbox(label="File Path")
read_file_button = gr.Button("Read File")
read_file_output = gr.Textbox(label="Output")
file_content = gr.Textbox(label="File Content")
write_file_button = gr.Button("Write File")
write_file_output = gr.Textbox(label="Output")
run_command_input = gr.Textbox(label="Command")
run_command_button = gr.Button("Run Command")
run_command_output = gr.Textbox(label="Output")
preview_button = gr.Button("Preview")
preview_output = gr.Textbox(label="Output")
create_project_button.click(
create_project_handler, inputs=project_name, outputs=create_project_output
)
list_files_button.click(
list_files_handler, outputs=list_files_output
)
read_file_button.click(
read_file_handler, inputs=file_path, outputs=read_file_output
)
write_file_button.click(
write_file_handler,
inputs=[file_path, file_content],
outputs=write_file_output,
)
run_command_button.click(
run_command_handler, inputs=run_command_input, outputs=run_command_output
)
preview_button.click(
preview_handler, outputs=preview_output
)
# --- Custom Server Settings ---
server_name = "0.0.0.0" # Listen on available network interfaces
server_port = 7860 # Choose an available port
share_gradio_link = True # Share a public URL for the app
# --- Launch the Interface ---
demo.launch(
server_name=server_name,
server_port=server_port,
share=share_gradio_link,
)
if __name__ == "__main__":
main() |