Spaces:
Sleeping
Sleeping
import transformers | |
from transformers import pipeline | |
def generate(idea): | |
"""Generates code based on a given idea using the PhiCo-D-Instruk model. | |
Args: | |
idea: The idea for the code to be generated. | |
Returns: | |
The generated code as a string. | |
""" | |
pipe = pipeline("text-generation", model="Bin12345/AutoCoder_S_6.7B") model = transformers.AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) | |
# Generate the code | |
input_text = f""" | |
# Idea: {idea} | |
# Code: | |
""" | |
input_ids = tokenizer.encode(input_text, return_tensors="pt") | |
output_sequences = model.generate( | |
input_ids=input_ids, | |
max_length=1024, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, | |
early_stopping=True, | |
temperature=0.7, # Adjust temperature for creativity | |
top_k=50, # Adjust top_k for diversity | |
) | |
generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True) | |
# Remove the prompt and formatting | |
generated_code = generated_code.split("\n# Code:")[1].strip() | |
return generated_code | |
# Example usage | |
idea = "Write a Python function to calculate the factorial of a number" | |
code = generate(idea) | |
print(code) |