Spaces:
Running
Running
acecalisto3
commited on
Commit
•
9f232dd
1
Parent(s):
84d915d
Update app.py
Browse files
app.py
CHANGED
@@ -12,6 +12,7 @@ import sys
|
|
12 |
openai.api_key = "YOUR_OPENAI_API_KEY"
|
13 |
|
14 |
PROJECT_ROOT = "projects"
|
|
|
15 |
|
16 |
# Global state to manage communication between Tool Box and Workspace Chat App
|
17 |
if 'chat_history' not in st.session_state:
|
@@ -20,19 +21,69 @@ if 'terminal_history' not in st.session_state:
|
|
20 |
st.session_state.terminal_history = []
|
21 |
if 'workspace_projects' not in st.session_state:
|
22 |
st.session_state.workspace_projects = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
-
Returns:
|
34 |
-
The chatbot's response.
|
35 |
-
"""
|
36 |
# Load the GPT-2 model which is compatible with AutoModelForCausalLM
|
37 |
model_name = "gpt2"
|
38 |
try:
|
@@ -42,9 +93,12 @@ def chat_interface(input_text):
|
|
42 |
except EnvironmentError as e:
|
43 |
return f"Error loading model: {e}"
|
44 |
|
|
|
|
|
|
|
45 |
# Truncate input text to avoid exceeding the model's maximum length
|
46 |
max_input_length = 900
|
47 |
-
input_ids = tokenizer.encode(
|
48 |
if input_ids.shape[1] > max_input_length:
|
49 |
input_ids = input_ids[:, :max_input_length]
|
50 |
|
@@ -55,326 +109,24 @@ def chat_interface(input_text):
|
|
55 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
56 |
return response
|
57 |
|
58 |
-
|
59 |
-
# 2. Terminal
|
60 |
-
def terminal_interface(command, project_name=None):
|
61 |
-
"""Executes commands in the terminal.
|
62 |
-
|
63 |
-
Args:
|
64 |
-
command: User's command.
|
65 |
-
project_name: Name of the project workspace to add installed packages.
|
66 |
-
|
67 |
-
Returns:
|
68 |
-
The terminal output.
|
69 |
-
"""
|
70 |
-
# Execute command
|
71 |
-
try:
|
72 |
-
process = subprocess.run(command.split(), capture_output=True, text=True)
|
73 |
-
output = process.stdout
|
74 |
-
|
75 |
-
# If the command is to install a package, update the workspace
|
76 |
-
if "install" in command and project_name:
|
77 |
-
requirements_path = os.path.join(PROJECT_ROOT, project_name, "requirements.txt")
|
78 |
-
with open(requirements_path, "a") as req_file:
|
79 |
-
package_name = command.split()[-1]
|
80 |
-
req_file.write(f"{package_name}\n")
|
81 |
-
except Exception as e:
|
82 |
-
output = f"Error: {e}"
|
83 |
-
return output
|
84 |
-
|
85 |
-
|
86 |
-
# 3. Code Editor
|
87 |
-
def code_editor_interface(code):
|
88 |
-
"""Provides code completion, formatting, and linting in the code editor.
|
89 |
-
|
90 |
-
Args:
|
91 |
-
code: User's code.
|
92 |
-
|
93 |
-
Returns:
|
94 |
-
Formatted and linted code.
|
95 |
-
"""
|
96 |
-
# Format code using black
|
97 |
-
try:
|
98 |
-
formatted_code = black.format_str(code, mode=black.FileMode())
|
99 |
-
except black.InvalidInput:
|
100 |
-
formatted_code = code # Keep original code if formatting fails
|
101 |
-
|
102 |
-
# Lint code using pylint
|
103 |
-
try:
|
104 |
-
pylint_output = StringIO()
|
105 |
-
sys.stdout = pylint_output
|
106 |
-
sys.stderr = pylint_output
|
107 |
-
lint.Run(['--from-stdin'], stdin=StringIO(formatted_code))
|
108 |
-
sys.stdout = sys.__stdout__
|
109 |
-
sys.stderr = sys.__stderr__
|
110 |
-
lint_message = pylint_output.getvalue()
|
111 |
-
except Exception as e:
|
112 |
-
lint_message = f"Pylint error: {e}"
|
113 |
-
|
114 |
-
return formatted_code, lint_message
|
115 |
-
|
116 |
-
|
117 |
-
# 4. Workspace
|
118 |
-
def workspace_interface(project_name):
|
119 |
-
"""Manages projects, files, and resources in the workspace.
|
120 |
-
|
121 |
-
Args:
|
122 |
-
project_name: Name of the new project.
|
123 |
-
|
124 |
-
Returns:
|
125 |
-
Project creation status.
|
126 |
-
"""
|
127 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
128 |
-
# Create project directory
|
129 |
-
try:
|
130 |
-
os.makedirs(project_path)
|
131 |
-
requirements_path = os.path.join(project_path, "requirements.txt")
|
132 |
-
with open(requirements_path, "w") as req_file:
|
133 |
-
req_file.write("") # Initialize an empty requirements.txt file
|
134 |
-
status = f'Project "{project_name}" created successfully.'
|
135 |
-
st.session_state.workspace_projects[project_name] = {'files': []}
|
136 |
-
except FileExistsError:
|
137 |
-
status = f'Project "{project_name}" already exists.'
|
138 |
-
return status
|
139 |
-
|
140 |
-
def add_code_to_workspace(project_name, code, file_name):
|
141 |
-
"""Adds selected code files to the workspace.
|
142 |
-
|
143 |
-
Args:
|
144 |
-
project_name: Name of the project.
|
145 |
-
code: Code to be added.
|
146 |
-
file_name: Name of the file to be created.
|
147 |
-
|
148 |
-
Returns:
|
149 |
-
File creation status.
|
150 |
-
"""
|
151 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
152 |
-
file_path = os.path.join(project_path, file_name)
|
153 |
-
|
154 |
-
try:
|
155 |
-
with open(file_path, "w") as code_file:
|
156 |
-
code_file.write(code)
|
157 |
-
status = f'File "{file_name}" added to project "{project_name}" successfully.'
|
158 |
-
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
159 |
-
except Exception as e:
|
160 |
-
status = f"Error: {e}"
|
161 |
-
return status
|
162 |
-
|
163 |
-
|
164 |
-
# 5. AI-Infused Tools
|
165 |
-
|
166 |
-
# Define custom AI-powered tools using Hugging Face models
|
167 |
-
|
168 |
-
# Example: Text summarization tool
|
169 |
-
def summarize_text(text):
|
170 |
-
"""Summarizes a given text using a Hugging Face model.
|
171 |
-
|
172 |
-
Args:
|
173 |
-
text: Text to be summarized.
|
174 |
-
|
175 |
-
Returns:
|
176 |
-
Summarized text.
|
177 |
-
"""
|
178 |
-
# Load the summarization model
|
179 |
-
model_name = "facebook/bart-large-cnn"
|
180 |
-
try:
|
181 |
-
summarizer = pipeline("summarization", model=model_name)
|
182 |
-
except EnvironmentError as e:
|
183 |
-
return f"Error loading model: {e}"
|
184 |
-
|
185 |
-
# Truncate input text to avoid exceeding the model's maximum length
|
186 |
-
max_input_length = 1024
|
187 |
-
inputs = text
|
188 |
-
if len(text) > max_input_length:
|
189 |
-
inputs = text[:max_input_length]
|
190 |
-
|
191 |
-
# Generate summary
|
192 |
-
summary = summarizer(inputs, max_length=100, min_length=30, do_sample=False)[0][
|
193 |
-
"summary_text"
|
194 |
-
]
|
195 |
-
return summary
|
196 |
-
|
197 |
-
# Example: Sentiment analysis tool
|
198 |
-
def sentiment_analysis(text):
|
199 |
-
"""Performs sentiment analysis on a given text using a Hugging Face model.
|
200 |
-
|
201 |
-
Args:
|
202 |
-
text: Text to be analyzed.
|
203 |
-
|
204 |
-
Returns:
|
205 |
-
Sentiment analysis result.
|
206 |
-
"""
|
207 |
-
# Load the sentiment analysis model
|
208 |
-
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
209 |
-
try:
|
210 |
-
analyzer = pipeline("sentiment-analysis", model=model_name)
|
211 |
-
except EnvironmentError as e:
|
212 |
-
return f"Error loading model: {e}"
|
213 |
-
|
214 |
-
# Perform sentiment analysis
|
215 |
-
result = analyzer(text)[0]
|
216 |
-
return result
|
217 |
-
|
218 |
-
# Example: Text translation tool (code translation)
|
219 |
-
def translate_code(code, source_language, target_language):
|
220 |
-
"""Translates code from one programming language to another using OpenAI Codex.
|
221 |
-
|
222 |
-
Args:
|
223 |
-
code: Code to be translated.
|
224 |
-
source_language: The source programming language.
|
225 |
-
target_language: The target programming language.
|
226 |
-
|
227 |
-
Returns:
|
228 |
-
Translated code.
|
229 |
-
"""
|
230 |
-
prompt = f"Translate the following {source_language} code to {target_language}:\n\n{code}"
|
231 |
-
try:
|
232 |
-
response = openai.Completion.create(
|
233 |
-
engine="code-davinci-002",
|
234 |
-
prompt=prompt,
|
235 |
-
max_tokens=1024,
|
236 |
-
temperature=0.3,
|
237 |
-
top_p=1,
|
238 |
-
n=1,
|
239 |
-
stop=None
|
240 |
-
)
|
241 |
-
translated_code = response.choices[0].text.strip()
|
242 |
-
except Exception as e:
|
243 |
-
translated_code = f"Error: {e}"
|
244 |
-
return translated_code
|
245 |
-
|
246 |
-
|
247 |
-
# 6. Code Generation
|
248 |
-
def generate_code(idea):
|
249 |
-
"""Generates code based on a given idea using the EleutherAI/gpt-neo-2.7B model.
|
250 |
-
Args:
|
251 |
-
idea: The idea for the code to be generated.
|
252 |
-
Returns:
|
253 |
-
The generated code as a string.
|
254 |
-
"""
|
255 |
-
|
256 |
-
# Load the code generation model
|
257 |
-
model_name = "EleutherAI/gpt-neo-2.7B"
|
258 |
-
try:
|
259 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
260 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
261 |
-
except EnvironmentError as e:
|
262 |
-
return f"Error loading model: {e}"
|
263 |
-
|
264 |
-
# Generate the code
|
265 |
-
input_text = f"""
|
266 |
-
# Idea: {idea}
|
267 |
-
# Code:
|
268 |
-
"""
|
269 |
-
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
270 |
-
output_sequences = model.generate(
|
271 |
-
input_ids=input_ids,
|
272 |
-
max_length=1024,
|
273 |
-
num_return_sequences=1,
|
274 |
-
no_repeat_ngram_size=2,
|
275 |
-
early_stopping=True,
|
276 |
-
temperature=0.7, # Adjust temperature for creativity
|
277 |
-
top_k=50, # Adjust top_k for diversity
|
278 |
-
)
|
279 |
-
generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True)
|
280 |
-
|
281 |
-
# Remove the prompt and formatting
|
282 |
-
parts = generated_code.split("\n# Code:")
|
283 |
-
if len(parts) > 1:
|
284 |
-
generated_code = parts[1].strip()
|
285 |
-
else:
|
286 |
-
generated_code = generated_code.strip()
|
287 |
-
|
288 |
-
return generated_code
|
289 |
-
|
290 |
-
|
291 |
-
# 7. AI Personas Creator
|
292 |
-
def create_persona_from_text(text):
|
293 |
-
"""Creates an AI persona from the given text.
|
294 |
-
|
295 |
-
Args:
|
296 |
-
text: Text to be used for creating the persona.
|
297 |
-
|
298 |
-
Returns:
|
299 |
-
Persona prompt.
|
300 |
-
"""
|
301 |
-
persona_prompt = f"""
|
302 |
-
As an elite expert developer with the highest level of proficiency in Streamlit, Gradio, and Hugging Face, I possess a comprehensive understanding of these technologies and their applications in web development and deployment. My expertise encompasses the following areas:
|
303 |
-
|
304 |
-
Streamlit:
|
305 |
-
* In-depth knowledge of Streamlit's architecture, components, and customization options.
|
306 |
-
* Expertise in creating interactive and user-friendly dashboards and applications.
|
307 |
-
* Proficiency in integrating Streamlit with various data sources and machine learning models.
|
308 |
-
|
309 |
-
Gradio:
|
310 |
-
* Thorough understanding of Gradio's capabilities for building and deploying machine learning interfaces.
|
311 |
-
* Expertise in creating custom Gradio components and integrating them with Streamlit applications.
|
312 |
-
* Proficiency in using Gradio to deploy models from Hugging Face and other frameworks.
|
313 |
-
|
314 |
-
Hugging Face:
|
315 |
-
* Comprehensive knowledge of Hugging Face's model hub and Transformers library.
|
316 |
-
* Expertise in fine-tuning and deploying Hugging Face models for various NLP and computer vision tasks.
|
317 |
-
* Proficiency in using Hugging Face's Spaces platform for model deployment and sharing.
|
318 |
-
|
319 |
-
Deployment:
|
320 |
-
* In-depth understanding of best practices for deploying Streamlit and Gradio applications.
|
321 |
-
* Expertise in deploying models on cloud platforms such as AWS, Azure, and GCP.
|
322 |
-
* Proficiency in optimizing deployment configurations for performance and scalability.
|
323 |
-
|
324 |
-
Additional Skills:
|
325 |
-
* Strong programming skills in Python and JavaScript.
|
326 |
-
* Familiarity with Docker and containerization technologies.
|
327 |
-
* Excellent communication and problem-solving abilities.
|
328 |
-
|
329 |
-
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications using Streamlit, Gradio, and Hugging Face. Please feel free to ask any questions or present any challenges you may encounter.
|
330 |
-
|
331 |
-
Example:
|
332 |
-
|
333 |
-
Task:
|
334 |
-
Develop a Streamlit application that allows users to generate text using a Hugging Face model. The application should include a Gradio component for user input and model prediction.
|
335 |
-
|
336 |
-
Solution:
|
337 |
-
|
338 |
-
import streamlit as st
|
339 |
-
import gradio as gr
|
340 |
-
from transformers import pipeline
|
341 |
-
|
342 |
-
# Create a Hugging Face pipeline
|
343 |
-
huggingface_model = pipeline("text-generation")
|
344 |
-
|
345 |
-
# Create a Streamlit app
|
346 |
-
st.title("Hugging Face Text Generation App")
|
347 |
-
|
348 |
-
# Define a Gradio component
|
349 |
-
demo = gr.Interface(
|
350 |
-
fn=huggingface_model,
|
351 |
-
inputs=gr.Textbox(lines=2),
|
352 |
-
outputs=gr.Textbox(lines=1),
|
353 |
-
)
|
354 |
-
|
355 |
-
# Display the Gradio component in the Streamlit app
|
356 |
-
st.write(demo)
|
357 |
-
"""
|
358 |
-
return persona_prompt
|
359 |
-
|
360 |
-
|
361 |
# Streamlit App
|
362 |
-
st.title("AI
|
363 |
|
364 |
# Sidebar navigation
|
365 |
st.sidebar.title("Navigation")
|
366 |
-
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI
|
367 |
|
368 |
-
if app_mode == "AI
|
369 |
-
# AI
|
370 |
-
st.header("Create
|
371 |
|
372 |
st.subheader("From Text")
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
st.
|
|
|
378 |
|
379 |
elif app_mode == "Tool Box":
|
380 |
# Tool Box
|
@@ -485,4 +237,23 @@ elif app_mode == "Workspace Chat App":
|
|
485 |
for project, details in st.session_state.workspace_projects.items():
|
486 |
st.write(f"Project: {project}")
|
487 |
for file in details['files']:
|
488 |
-
st.write(f" - {file}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
openai.api_key = "YOUR_OPENAI_API_KEY"
|
13 |
|
14 |
PROJECT_ROOT = "projects"
|
15 |
+
AGENT_DIRECTORY = "agents"
|
16 |
|
17 |
# Global state to manage communication between Tool Box and Workspace Chat App
|
18 |
if 'chat_history' not in st.session_state:
|
|
|
21 |
st.session_state.terminal_history = []
|
22 |
if 'workspace_projects' not in st.session_state:
|
23 |
st.session_state.workspace_projects = {}
|
24 |
+
if 'available_agents' not in st.session_state:
|
25 |
+
st.session_state.available_agents = []
|
26 |
+
|
27 |
+
class AIAgent:
|
28 |
+
def __init__(self, name, description, skills):
|
29 |
+
self.name = name
|
30 |
+
self.description = description
|
31 |
+
self.skills = skills
|
32 |
+
|
33 |
+
def create_agent_prompt(self):
|
34 |
+
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
|
35 |
+
agent_prompt = f"""
|
36 |
+
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
|
37 |
+
{skills_str}
|
38 |
+
|
39 |
+
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
|
40 |
+
"""
|
41 |
+
return agent_prompt
|
42 |
+
|
43 |
+
def autonomous_build(self, chat_history, workspace_projects):
|
44 |
+
"""
|
45 |
+
Autonomous build logic that continues based on the state of chat history and workspace projects.
|
46 |
+
"""
|
47 |
+
# Example logic: Generate a summary of chat history and workspace state
|
48 |
+
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
49 |
+
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
50 |
+
|
51 |
+
# Example: Generate the next logical step in the project
|
52 |
+
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
53 |
+
|
54 |
+
return summary, next_step
|
55 |
+
|
56 |
+
def save_agent_to_file(agent):
|
57 |
+
"""Saves the agent's prompt to a file."""
|
58 |
+
if not os.path.exists(AGENT_DIRECTORY):
|
59 |
+
os.makedirs(AGENT_DIRECTORY)
|
60 |
+
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
|
61 |
+
with open(file_path, "w") as file:
|
62 |
+
file.write(agent.create_agent_prompt())
|
63 |
+
st.session_state.available_agents.append(agent.name)
|
64 |
+
|
65 |
+
def load_agent_prompt(agent_name):
|
66 |
+
"""Loads an agent prompt from a file."""
|
67 |
+
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
68 |
+
if os.path.exists(file_path):
|
69 |
+
with open(file_path, "r") as file:
|
70 |
+
agent_prompt = file.read()
|
71 |
+
return agent_prompt
|
72 |
+
else:
|
73 |
+
return None
|
74 |
|
75 |
+
def create_agent_from_text(name, text):
|
76 |
+
skills = text.split('\n')
|
77 |
+
agent = AIAgent(name, "AI agent created from text input.", skills)
|
78 |
+
save_agent_to_file(agent)
|
79 |
+
return agent.create_agent_prompt()
|
80 |
|
81 |
+
# Chat interface using a selected agent
|
82 |
+
def chat_interface_with_agent(input_text, agent_name):
|
83 |
+
agent_prompt = load_agent_prompt(agent_name)
|
84 |
+
if agent_prompt is None:
|
85 |
+
return f"Agent {agent_name} not found."
|
86 |
|
|
|
|
|
|
|
87 |
# Load the GPT-2 model which is compatible with AutoModelForCausalLM
|
88 |
model_name = "gpt2"
|
89 |
try:
|
|
|
93 |
except EnvironmentError as e:
|
94 |
return f"Error loading model: {e}"
|
95 |
|
96 |
+
# Combine the agent prompt with user input
|
97 |
+
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
|
98 |
+
|
99 |
# Truncate input text to avoid exceeding the model's maximum length
|
100 |
max_input_length = 900
|
101 |
+
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
|
102 |
if input_ids.shape[1] > max_input_length:
|
103 |
input_ids = input_ids[:, :max_input_length]
|
104 |
|
|
|
109 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
110 |
return response
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
# Streamlit App
|
113 |
+
st.title("AI Agent Creator")
|
114 |
|
115 |
# Sidebar navigation
|
116 |
st.sidebar.title("Navigation")
|
117 |
+
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
118 |
|
119 |
+
if app_mode == "AI Agent Creator":
|
120 |
+
# AI Agent Creator
|
121 |
+
st.header("Create an AI Agent from Text")
|
122 |
|
123 |
st.subheader("From Text")
|
124 |
+
agent_name = st.text_input("Enter agent name:")
|
125 |
+
text_input = st.text_area("Enter skills (one per line):")
|
126 |
+
if st.button("Create Agent"):
|
127 |
+
agent_prompt = create_agent_from_text(agent_name, text_input)
|
128 |
+
st.success(f"Agent '{agent_name}' created and saved successfully.")
|
129 |
+
st.session_state.available_agents.append(agent_name)
|
130 |
|
131 |
elif app_mode == "Tool Box":
|
132 |
# Tool Box
|
|
|
237 |
for project, details in st.session_state.workspace_projects.items():
|
238 |
st.write(f"Project: {project}")
|
239 |
for file in details['files']:
|
240 |
+
st.write(f" - {file}")
|
241 |
+
|
242 |
+
# Chat with AI Agents
|
243 |
+
st.subheader("Chat with AI Agents")
|
244 |
+
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
|
245 |
+
agent_chat_input = st.text_area("Enter your message for the agent:")
|
246 |
+
if st.button("Send to Agent"):
|
247 |
+
agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
|
248 |
+
st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
|
249 |
+
st.write(f"{selected_agent}: {agent_chat_response}")
|
250 |
+
|
251 |
+
# Automate Build Process
|
252 |
+
st.subheader("Automate Build Process")
|
253 |
+
if st.button("Automate"):
|
254 |
+
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
|
255 |
+
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
|
256 |
+
st.write("Autonomous Build Summary:")
|
257 |
+
st.write(summary)
|
258 |
+
st.write("Next Step:")
|
259 |
+
st.write(next_step)
|