acecalisto3 commited on
Commit
d2213e9
1 Parent(s): 83d7dd2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -1
app.py CHANGED
@@ -1,12 +1,43 @@
1
  import os
2
  import subprocess
3
  import streamlit as st
4
- from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel
5
  import black
6
  from pylint import lint
7
  from io import StringIO
8
  import openai
9
  import sys
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  # Set your OpenAI API key here
12
  openai.api_key = "YOUR_OPENAI_API_KEY"
@@ -355,6 +386,7 @@ elif app_mode == "Workspace Chat App":
355
  file_name = st.text_input("Enter file name (e.g., 'app.py'):")
356
  if st.button("Add Code"):
357
  add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
 
358
  st.success(add_code_status)
359
 
360
  # Terminal Interface with Project Context
@@ -362,6 +394,7 @@ elif app_mode == "Workspace Chat App":
362
  terminal_input = st.text_input("Enter a command within the workspace:")
363
  if st.button("Run Command"):
364
  terminal_output = terminal_interface(terminal_input, project_name)
 
365
  st.code(terminal_output, language="bash")
366
 
367
  # Chat Interface for Guidance
 
1
  import os
2
  import subprocess
3
  import streamlit as st
4
+ from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
5
  import black
6
  from pylint import lint
7
  from io import StringIO
8
  import openai
9
  import sys
10
+ import torch
11
+
12
+ # Load pre-trained RAG retriever
13
+ rag_retriever = RagRetriever.from_pretrained("facebook/rag-base")
14
+
15
+ # Load pre-trained chat model
16
+ chat_model = AutoModelForSeq2SeqLM.from_pretrained("google/chat-model-base")
17
+
18
+ # Load tokenizer
19
+ tokenizer = AutoTokenizer.from_pretrained("google/chat-model-base")
20
+
21
+ def process_input(user_input):
22
+ # Input pipeline: Tokenize and preprocess user input
23
+ input_ids = tokenizer(user_input, return_tensors="pt").input_ids
24
+ attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
25
+
26
+ # RAG model: Generate response
27
+ with torch.no_grad():
28
+ output = rag_retriever(input_ids, attention_mask=attention_mask)
29
+ response = output.generator_outputs[0].sequences[0]
30
+
31
+ # Chat model: Refine response
32
+ chat_input = tokenizer(response, return_tensors="pt")
33
+ chat_input["input_ids"] = chat_input["input_ids"].unsqueeze(0)
34
+ chat_input["attention_mask"] = chat_input["attention_mask"].unsqueeze(0)
35
+ with torch.no_grad():
36
+ chat_output = chat_model(**chat_input)
37
+ refined_response = chat_output.sequences[0]
38
+
39
+ # Output pipeline: Return final response
40
+ return refined_response
41
 
42
  # Set your OpenAI API key here
43
  openai.api_key = "YOUR_OPENAI_API_KEY"
 
386
  file_name = st.text_input("Enter file name (e.g., 'app.py'):")
387
  if st.button("Add Code"):
388
  add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
389
+ st.session_state.terminal_history.append((f"Add Code: {code_to_add}", add_code_status))
390
  st.success(add_code_status)
391
 
392
  # Terminal Interface with Project Context
 
394
  terminal_input = st.text_input("Enter a command within the workspace:")
395
  if st.button("Run Command"):
396
  terminal_output = terminal_interface(terminal_input, project_name)
397
+ st.session_state.terminal_history.append((terminal_input, terminal_output))
398
  st.code(terminal_output, language="bash")
399
 
400
  # Chat Interface for Guidance