acecalisto3 commited on
Commit
f819cc0
1 Parent(s): cd100ae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -133
app.py CHANGED
@@ -1,13 +1,16 @@
 
1
  import os
2
  import subprocess
3
- import streamlit as st
4
  from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
5
  import black
6
  from pylint import lint
7
  from io import StringIO
8
  import openai
 
 
 
 
9
 
10
- HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
11
  PROJECT_ROOT = "projects"
12
  AGENT_DIRECTORY = "agents"
13
 
@@ -20,11 +23,6 @@ if 'workspace_projects' not in st.session_state:
20
  st.session_state.workspace_projects = {}
21
  if 'available_agents' not in st.session_state:
22
  st.session_state.available_agents = []
23
- if 'current_state' not in st.session_state:
24
- st.session_state.current_state = {
25
- 'toolbox': {},
26
- 'workspace_chat': {}
27
- }
28
 
29
  class AIAgent:
30
  def __init__(self, name, description, skills):
@@ -48,30 +46,19 @@ I am confident that I can leverage my expertise to assist you in developing and
48
  summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
49
  summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
50
 
51
- # Implement more sophisticated logic here based on chat history and workspace projects
52
- # For example, you could:
53
- # - Analyze the chat history to identify the user's goals and suggest relevant actions.
54
- # - Check the workspace projects for missing files or dependencies and suggest adding them.
55
- # - Use a language model to generate code based on the user's requests.
56
-
57
  next_step = "Based on the current state, the next logical step is to implement the main application logic."
58
 
59
  return summary, next_step
60
 
61
  def save_agent_to_file(agent):
62
- """Saves the agent's prompt to a file locally and then commits to the Hugging Face repository."""
63
  if not os.path.exists(AGENT_DIRECTORY):
64
  os.makedirs(AGENT_DIRECTORY)
65
  file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
66
- config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt")
67
  with open(file_path, "w") as file:
68
  file.write(agent.create_agent_prompt())
69
- with open(config_path, "w") as file:
70
- file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}")
71
  st.session_state.available_agents.append(agent.name)
72
 
73
- commit_and_push_changes(f"Add agent {agent.name}")
74
-
75
  def load_agent_prompt(agent_name):
76
  """Loads an agent prompt from a file."""
77
  file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
@@ -88,13 +75,11 @@ def create_agent_from_text(name, text):
88
  save_agent_to_file(agent)
89
  return agent.create_agent_prompt()
90
 
91
- # Chat interface using a selected agent
92
  def chat_interface_with_agent(input_text, agent_name):
93
  agent_prompt = load_agent_prompt(agent_name)
94
  if agent_prompt is None:
95
  return f"Agent {agent_name} not found."
96
 
97
- # Load the GPT-2 model which is compatible with AutoModelForCausalLM
98
  model_name = "gpt2"
99
  try:
100
  model = AutoModelForCausalLM.from_pretrained(model_name)
@@ -103,31 +88,27 @@ def chat_interface_with_agent(input_text, agent_name):
103
  except EnvironmentError as e:
104
  return f"Error loading model: {e}"
105
 
106
- # Combine the agent prompt with user input
107
  combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
108
 
109
- # Truncate input text to avoid exceeding the model's maximum length
110
- max_input_length = 900
111
  input_ids = tokenizer.encode(combined_input, return_tensors="pt")
 
112
  if input_ids.shape[1] > max_input_length:
113
  input_ids = input_ids[:, :max_input_length]
114
 
115
- # Generate chatbot response
116
  outputs = model.generate(
117
- input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True, pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
 
118
  )
119
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
120
  return response
121
 
122
  def workspace_interface(project_name):
123
- project_path = os.path.join(PROJECT_ROOT, project_name)
124
  if not os.path.exists(PROJECT_ROOT):
125
  os.makedirs(PROJECT_ROOT)
 
126
  if not os.path.exists(project_path):
127
  os.makedirs(project_path)
128
  st.session_state.workspace_projects[project_name] = {"files": []}
129
- st.session_state.current_state['workspace_chat']['project_name'] = project_name
130
- commit_and_push_changes(f"Create project {project_name}")
131
  return f"Project {project_name} created successfully."
132
  else:
133
  return f"Project {project_name} already exists."
@@ -139,8 +120,6 @@ def add_code_to_workspace(project_name, code, file_name):
139
  with open(file_path, "w") as file:
140
  file.write(code)
141
  st.session_state.workspace_projects[project_name]["files"].append(file_name)
142
- st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code}
143
- commit_and_push_changes(f"Add code to {file_name} in project {project_name}")
144
  return f"Code added to {file_name} in project {project_name} successfully."
145
  else:
146
  return f"Project {project_name} does not exist."
@@ -153,58 +132,42 @@ def terminal_interface(command, project_name=None):
153
  result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
154
  else:
155
  result = subprocess.run(command, shell=True, capture_output=True, text=True)
 
156
  if result.returncode == 0:
157
- st.session_state.current_state['toolbox']['terminal_output'] = result.stdout
158
  return result.stdout
159
  else:
160
- st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
161
  return result.stderr
162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
  def summarize_text(text):
164
  summarizer = pipeline("summarization")
165
  summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
166
- st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text']
167
  return summary[0]['summary_text']
168
 
169
  def sentiment_analysis(text):
170
  analyzer = pipeline("sentiment-analysis")
171
  sentiment = analyzer(text)
172
- st.session_state.current_state['toolbox']['sentiment'] = sentiment[0]
173
  return sentiment[0]
174
 
175
- # ... [rest of the translate_code function, but remove the OpenAI API call and replace it with your own logic] ...
176
-
177
- def generate_code(code_idea):
178
- # Replace this with a call to a Hugging Face model or your own logic
179
- # For example, using a text-generation pipeline:
180
- generator = pipeline('text-generation', model='gpt4o')
181
- generated_code = generator(code_idea, max_length=10000, num_return_sequences=1)[0]['generated_text']
182
- messages=[
183
- {"role": "system", "content": "You are an expert software developer."},
184
- {"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
185
- ]
186
- st.session_state.current_state['toolbox']['generated_code'] = generated_code
187
-
188
- return generated_code
189
-
190
- def translate_code(code, input_language, output_language):
191
- # Define a dictionary to map programming languages to their corresponding file extensions
192
- language_extensions = {
193
-
194
- }
195
-
196
- # Add code to handle edge cases such as invalid input and unsupported programming languages
197
- if input_language not in language_extensions:
198
- raise ValueError(f"Invalid input language: {input_language}")
199
- if output_language not in language_extensions:
200
- raise ValueError(f"Invalid output language: {output_language}")
201
-
202
- # Use the dictionary to map the input and output languages to their corresponding file extensions
203
- input_extension = language_extensions[input_language]
204
- output_extension = language_extensions[output_language]
205
-
206
- # Translate the code using the OpenAI API
207
- prompt = f"Translate this code from {input_language} to {output_language}:\n\n{code}"
208
  response = openai.ChatCompletion.create(
209
  model="gpt-4",
210
  messages=[
@@ -212,12 +175,7 @@ def translate_code(code, input_language, output_language):
212
  {"role": "user", "content": prompt}
213
  ]
214
  )
215
- translated_code = response.choices[0].message['content'].strip()
216
-
217
- # Return the translated code
218
- translated_code = response.choices[0].message['content'].strip()
219
- st.session_state.current_state['toolbox']['translated_code'] = translated_code
220
- return translated_code
221
 
222
  def generate_code(code_idea):
223
  response = openai.ChatCompletion.create(
@@ -227,32 +185,14 @@ def generate_code(code_idea):
227
  {"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
228
  ]
229
  )
230
- generated_code = response.choices[0].message['content'].strip()
231
- st.session_state.current_state['toolbox']['generated_code'] = generated_code
232
- return generated_code
233
-
234
- def commit_and_push_changes(commit_message):
235
- """Commits and pushes changes to the Hugging Face repository."""
236
- commands = [
237
- "git add .",
238
- f"git commit -m '{commit_message}'",
239
- "git push"
240
- ]
241
- for command in commands:
242
- result = subprocess.run(command, shell=True, capture_output=True, text=True)
243
- if result.returncode != 0:
244
- st.error(f"Error executing command '{command}': {result.stderr}")
245
- break
246
 
247
- # Streamlit App
248
  st.title("AI Agent Creator")
249
 
250
- # Sidebar navigation
251
  st.sidebar.title("Navigation")
252
  app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
253
 
254
  if app_mode == "AI Agent Creator":
255
- # AI Agent Creator
256
  st.header("Create an AI Agent from Text")
257
 
258
  st.subheader("From Text")
@@ -264,23 +204,20 @@ if app_mode == "AI Agent Creator":
264
  st.session_state.available_agents.append(agent_name)
265
 
266
  elif app_mode == "Tool Box":
267
- # Tool Box
268
  st.header("AI-Powered Tools")
269
 
270
- # Chat Interface
271
  st.subheader("Chat with CodeCraft")
272
  chat_input = st.text_area("Enter your message:")
273
  if st.button("Send"):
274
  if chat_input.startswith("@"):
275
- agent_name = chat_input.split(" ")[0][1:] # Extract agent_name from @agent_name
276
- chat_input = " ".join(chat_input.split(" ")[1:]) # Remove agent_name from input
277
  chat_response = chat_interface_with_agent(chat_input, agent_name)
278
  else:
279
- chat_response = chat_interface(chat_input)
280
  st.session_state.chat_history.append((chat_input, chat_response))
281
  st.write(f"CodeCraft: {chat_response}")
282
 
283
- # Terminal Interface
284
  st.subheader("Terminal")
285
  terminal_input = st.text_input("Enter a command:")
286
  if st.button("Run"):
@@ -288,7 +225,6 @@ elif app_mode == "Tool Box":
288
  st.session_state.terminal_history.append((terminal_input, terminal_output))
289
  st.code(terminal_output, language="bash")
290
 
291
- # Code Editor Interface
292
  st.subheader("Code Editor")
293
  code_editor = st.text_area("Write your code:", height=300)
294
  if st.button("Format & Lint"):
@@ -296,21 +232,18 @@ elif app_mode == "Tool Box":
296
  st.code(formatted_code, language="python")
297
  st.info(lint_message)
298
 
299
- # Text Summarization Tool
300
  st.subheader("Summarize Text")
301
  text_to_summarize = st.text_area("Enter text to summarize:")
302
  if st.button("Summarize"):
303
  summary = summarize_text(text_to_summarize)
304
  st.write(f"Summary: {summary}")
305
 
306
- # Sentiment Analysis Tool
307
  st.subheader("Sentiment Analysis")
308
  sentiment_text = st.text_area("Enter text for sentiment analysis:")
309
  if st.button("Analyze Sentiment"):
310
  sentiment = sentiment_analysis(sentiment_text)
311
  st.write(f"Sentiment: {sentiment}")
312
 
313
- # Text Translation Tool (Code Translation)
314
  st.subheader("Translate Code")
315
  code_to_translate = st.text_area("Enter code to translate:")
316
  source_language = st.text_input("Enter source language (e.g. 'Python'):")
@@ -319,14 +252,12 @@ elif app_mode == "Tool Box":
319
  translated_code = translate_code(code_to_translate, source_language, target_language)
320
  st.code(translated_code, language=target_language.lower())
321
 
322
- # Code Generation
323
  st.subheader("Code Generation")
324
  code_idea = st.text_input("Enter your code idea:")
325
  if st.button("Generate Code"):
326
  generated_code = generate_code(code_idea)
327
  st.code(generated_code, language="python")
328
 
329
- # Display Preset Commands
330
  st.subheader("Preset Commands")
331
  preset_commands = {
332
  "Create a new project": "create_project('project_name')",
@@ -341,17 +272,14 @@ elif app_mode == "Tool Box":
341
  st.write(f"{command_name}: `{command}`")
342
 
343
  elif app_mode == "Workspace Chat App":
344
- # Workspace Chat App
345
  st.header("Workspace Chat App")
346
 
347
- # Project Workspace Creation
348
  st.subheader("Create a New Project")
349
  project_name = st.text_input("Enter project name:")
350
  if st.button("Create Project"):
351
  workspace_status = workspace_interface(project_name)
352
  st.success(workspace_status)
353
 
354
- # Add Code to Workspace
355
  st.subheader("Add Code to Workspace")
356
  code_to_add = st.text_area("Enter code to add to workspace:")
357
  file_name = st.text_input("Enter file name (e.g. 'app.py'):")
@@ -359,59 +287,55 @@ elif app_mode == "Workspace Chat App":
359
  add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
360
  st.success(add_code_status)
361
 
362
- # Terminal Interface with Project Context
363
  st.subheader("Terminal (Workspace Context)")
364
  terminal_input = st.text_input("Enter a command within the workspace:")
365
  if st.button("Run Command"):
366
  terminal_output = terminal_interface(terminal_input, project_name)
367
  st.code(terminal_output, language="bash")
368
 
369
- # Chat Interface for Guidance
370
  st.subheader("Chat with CodeCraft for Guidance")
371
  chat_input = st.text_area("Enter your message for guidance:")
372
  if st.button("Get Guidance"):
373
- chat_response = chat_interface(chat_input)
374
  st.session_state.chat_history.append((chat_input, chat_response))
375
  st.write(f"CodeCraft: {chat_response}")
376
 
377
- # Display Chat History
378
  st.subheader("Chat History")
379
  for user_input, response in st.session_state.chat_history:
380
  st.write(f"User: {user_input}")
381
  st.write(f"CodeCraft: {response}")
382
 
383
- # Display Terminal History
384
  st.subheader("Terminal History")
385
  for command, output in st.session_state.terminal_history:
386
  st.write(f"Command: {command}")
387
  st.code(output, language="bash")
388
 
389
- # Display Projects and Files
390
  st.subheader("Workspace Projects")
391
  for project, details in st.session_state.workspace_projects.items():
392
  st.write(f"Project: {project}")
393
  for file in details['files']:
394
  st.write(f" - {file}")
395
 
396
- # Chat with AI Agents
397
  st.subheader("Chat with AI Agents")
398
- selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
399
- agent_chat_input = st.text_area("Enter your message for the agent:")
400
- if st.button("Send to Agent"):
401
- agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
402
- st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
403
- st.write(f"{selected_agent}: {agent_chat_response}")
404
-
405
- # Automate Build Process
 
 
406
  st.subheader("Automate Build Process")
407
  if st.button("Automate"):
408
- agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
409
- summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
410
- st.write("Autonomous Build Summary:")
411
- st.write(summary)
412
- st.write("Next Step:")
413
- st.write(next_step)
414
-
415
- # Display current state for debugging
416
- st.sidebar.subheader("Current State")
417
- st.sidebar.json(st.session_state.current_state)
 
1
+ import streamlit as st
2
  import os
3
  import subprocess
 
4
  from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
5
  import black
6
  from pylint import lint
7
  from io import StringIO
8
  import openai
9
+ import sys
10
+
11
+ # Set your OpenAI API key here
12
+ openai.api_key = "YOUR_OPENAI_API_KEY"
13
 
 
14
  PROJECT_ROOT = "projects"
15
  AGENT_DIRECTORY = "agents"
16
 
 
23
  st.session_state.workspace_projects = {}
24
  if 'available_agents' not in st.session_state:
25
  st.session_state.available_agents = []
 
 
 
 
 
26
 
27
  class AIAgent:
28
  def __init__(self, name, description, skills):
 
46
  summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
47
  summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
48
 
 
 
 
 
 
 
49
  next_step = "Based on the current state, the next logical step is to implement the main application logic."
50
 
51
  return summary, next_step
52
 
53
  def save_agent_to_file(agent):
54
+ """Saves the agent's prompt to a file."""
55
  if not os.path.exists(AGENT_DIRECTORY):
56
  os.makedirs(AGENT_DIRECTORY)
57
  file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
 
58
  with open(file_path, "w") as file:
59
  file.write(agent.create_agent_prompt())
 
 
60
  st.session_state.available_agents.append(agent.name)
61
 
 
 
62
  def load_agent_prompt(agent_name):
63
  """Loads an agent prompt from a file."""
64
  file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
 
75
  save_agent_to_file(agent)
76
  return agent.create_agent_prompt()
77
 
 
78
  def chat_interface_with_agent(input_text, agent_name):
79
  agent_prompt = load_agent_prompt(agent_name)
80
  if agent_prompt is None:
81
  return f"Agent {agent_name} not found."
82
 
 
83
  model_name = "gpt2"
84
  try:
85
  model = AutoModelForCausalLM.from_pretrained(model_name)
 
88
  except EnvironmentError as e:
89
  return f"Error loading model: {e}"
90
 
 
91
  combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
92
 
 
 
93
  input_ids = tokenizer.encode(combined_input, return_tensors="pt")
94
+ max_input_length = 900
95
  if input_ids.shape[1] > max_input_length:
96
  input_ids = input_ids[:, :max_input_length]
97
 
 
98
  outputs = model.generate(
99
+ input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True,
100
+ pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
101
  )
102
  response = tokenizer.decode(outputs[0], skip_special_tokens=True)
103
  return response
104
 
105
  def workspace_interface(project_name):
 
106
  if not os.path.exists(PROJECT_ROOT):
107
  os.makedirs(PROJECT_ROOT)
108
+ project_path = os.path.join(PROJECT_ROOT, project_name)
109
  if not os.path.exists(project_path):
110
  os.makedirs(project_path)
111
  st.session_state.workspace_projects[project_name] = {"files": []}
 
 
112
  return f"Project {project_name} created successfully."
113
  else:
114
  return f"Project {project_name} already exists."
 
120
  with open(file_path, "w") as file:
121
  file.write(code)
122
  st.session_state.workspace_projects[project_name]["files"].append(file_name)
 
 
123
  return f"Code added to {file_name} in project {project_name} successfully."
124
  else:
125
  return f"Project {project_name} does not exist."
 
132
  result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
133
  else:
134
  result = subprocess.run(command, shell=True, capture_output=True, text=True)
135
+
136
  if result.returncode == 0:
 
137
  return result.stdout
138
  else:
 
139
  return result.stderr
140
 
141
+ def code_editor_interface(code):
142
+ try:
143
+ formatted_code = black.format_str(code, mode=black.FileMode())
144
+ except black.NothingChanged:
145
+ formatted_code = code
146
+
147
+ result = StringIO()
148
+ sys.stdout = result
149
+ sys.stderr = result
150
+
151
+ (pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
152
+ sys.stdout = sys.__stdout__
153
+ sys.stderr = sys.__stderr__
154
+
155
+ lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
156
+
157
+ return formatted_code, lint_message
158
+
159
  def summarize_text(text):
160
  summarizer = pipeline("summarization")
161
  summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
 
162
  return summary[0]['summary_text']
163
 
164
  def sentiment_analysis(text):
165
  analyzer = pipeline("sentiment-analysis")
166
  sentiment = analyzer(text)
 
167
  return sentiment[0]
168
 
169
+ def translate_code(code, source_language, target_language):
170
+ prompt = f"Translate this code from {source_language} to {target_language}:\n\n{code}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
  response = openai.ChatCompletion.create(
172
  model="gpt-4",
173
  messages=[
 
175
  {"role": "user", "content": prompt}
176
  ]
177
  )
178
+ return response.choices[0].message['content'].strip()
 
 
 
 
 
179
 
180
  def generate_code(code_idea):
181
  response = openai.ChatCompletion.create(
 
185
  {"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
186
  ]
187
  )
188
+ return response.choices[0].message['content'].strip()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
 
 
190
  st.title("AI Agent Creator")
191
 
 
192
  st.sidebar.title("Navigation")
193
  app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
194
 
195
  if app_mode == "AI Agent Creator":
 
196
  st.header("Create an AI Agent from Text")
197
 
198
  st.subheader("From Text")
 
204
  st.session_state.available_agents.append(agent_name)
205
 
206
  elif app_mode == "Tool Box":
 
207
  st.header("AI-Powered Tools")
208
 
 
209
  st.subheader("Chat with CodeCraft")
210
  chat_input = st.text_area("Enter your message:")
211
  if st.button("Send"):
212
  if chat_input.startswith("@"):
213
+ agent_name = chat_input.split(" ")[0][1:]
214
+ chat_input = " ".join(chat_input.split(" ")[1:])
215
  chat_response = chat_interface_with_agent(chat_input, agent_name)
216
  else:
217
+ chat_response = "Chat interface function not provided."
218
  st.session_state.chat_history.append((chat_input, chat_response))
219
  st.write(f"CodeCraft: {chat_response}")
220
 
 
221
  st.subheader("Terminal")
222
  terminal_input = st.text_input("Enter a command:")
223
  if st.button("Run"):
 
225
  st.session_state.terminal_history.append((terminal_input, terminal_output))
226
  st.code(terminal_output, language="bash")
227
 
 
228
  st.subheader("Code Editor")
229
  code_editor = st.text_area("Write your code:", height=300)
230
  if st.button("Format & Lint"):
 
232
  st.code(formatted_code, language="python")
233
  st.info(lint_message)
234
 
 
235
  st.subheader("Summarize Text")
236
  text_to_summarize = st.text_area("Enter text to summarize:")
237
  if st.button("Summarize"):
238
  summary = summarize_text(text_to_summarize)
239
  st.write(f"Summary: {summary}")
240
 
 
241
  st.subheader("Sentiment Analysis")
242
  sentiment_text = st.text_area("Enter text for sentiment analysis:")
243
  if st.button("Analyze Sentiment"):
244
  sentiment = sentiment_analysis(sentiment_text)
245
  st.write(f"Sentiment: {sentiment}")
246
 
 
247
  st.subheader("Translate Code")
248
  code_to_translate = st.text_area("Enter code to translate:")
249
  source_language = st.text_input("Enter source language (e.g. 'Python'):")
 
252
  translated_code = translate_code(code_to_translate, source_language, target_language)
253
  st.code(translated_code, language=target_language.lower())
254
 
 
255
  st.subheader("Code Generation")
256
  code_idea = st.text_input("Enter your code idea:")
257
  if st.button("Generate Code"):
258
  generated_code = generate_code(code_idea)
259
  st.code(generated_code, language="python")
260
 
 
261
  st.subheader("Preset Commands")
262
  preset_commands = {
263
  "Create a new project": "create_project('project_name')",
 
272
  st.write(f"{command_name}: `{command}`")
273
 
274
  elif app_mode == "Workspace Chat App":
 
275
  st.header("Workspace Chat App")
276
 
 
277
  st.subheader("Create a New Project")
278
  project_name = st.text_input("Enter project name:")
279
  if st.button("Create Project"):
280
  workspace_status = workspace_interface(project_name)
281
  st.success(workspace_status)
282
 
 
283
  st.subheader("Add Code to Workspace")
284
  code_to_add = st.text_area("Enter code to add to workspace:")
285
  file_name = st.text_input("Enter file name (e.g. 'app.py'):")
 
287
  add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
288
  st.success(add_code_status)
289
 
 
290
  st.subheader("Terminal (Workspace Context)")
291
  terminal_input = st.text_input("Enter a command within the workspace:")
292
  if st.button("Run Command"):
293
  terminal_output = terminal_interface(terminal_input, project_name)
294
  st.code(terminal_output, language="bash")
295
 
 
296
  st.subheader("Chat with CodeCraft for Guidance")
297
  chat_input = st.text_area("Enter your message for guidance:")
298
  if st.button("Get Guidance"):
299
+ chat_response = "Chat interface function not provided."
300
  st.session_state.chat_history.append((chat_input, chat_response))
301
  st.write(f"CodeCraft: {chat_response}")
302
 
 
303
  st.subheader("Chat History")
304
  for user_input, response in st.session_state.chat_history:
305
  st.write(f"User: {user_input}")
306
  st.write(f"CodeCraft: {response}")
307
 
 
308
  st.subheader("Terminal History")
309
  for command, output in st.session_state.terminal_history:
310
  st.write(f"Command: {command}")
311
  st.code(output, language="bash")
312
 
 
313
  st.subheader("Workspace Projects")
314
  for project, details in st.session_state.workspace_projects.items():
315
  st.write(f"Project: {project}")
316
  for file in details['files']:
317
  st.write(f" - {file}")
318
 
 
319
  st.subheader("Chat with AI Agents")
320
+ if st.session_state.available_agents:
321
+ selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
322
+ agent_chat_input = st.text_area("Enter your message for the agent:")
323
+ if st.button("Send to Agent"):
324
+ agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
325
+ st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
326
+ st.write(f"{selected_agent}: {agent_chat_response}")
327
+ else:
328
+ st.write("No agents available. Please create an agent first.")
329
+
330
  st.subheader("Automate Build Process")
331
  if st.button("Automate"):
332
+ if st.session_state.available_agents:
333
+ selected_agent = st.session_state.available_agents[0]
334
+ agent = AIAgent(selected_agent, "", [])
335
+ summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
336
+ st.write("Autonomous Build Summary:")
337
+ st.write(summary)
338
+ st.write("Next Step:")
339
+ st.write(next_step)
340
+ else:
341
+ st.write("No agents available. Please create an agent first.")