Spaces:
Running
Running
acecalisto3
commited on
Commit
•
f819cc0
1
Parent(s):
cd100ae
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,16 @@
|
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
-
import streamlit as st
|
4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
5 |
import black
|
6 |
from pylint import lint
|
7 |
from io import StringIO
|
8 |
import openai
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
|
11 |
PROJECT_ROOT = "projects"
|
12 |
AGENT_DIRECTORY = "agents"
|
13 |
|
@@ -20,11 +23,6 @@ if 'workspace_projects' not in st.session_state:
|
|
20 |
st.session_state.workspace_projects = {}
|
21 |
if 'available_agents' not in st.session_state:
|
22 |
st.session_state.available_agents = []
|
23 |
-
if 'current_state' not in st.session_state:
|
24 |
-
st.session_state.current_state = {
|
25 |
-
'toolbox': {},
|
26 |
-
'workspace_chat': {}
|
27 |
-
}
|
28 |
|
29 |
class AIAgent:
|
30 |
def __init__(self, name, description, skills):
|
@@ -48,30 +46,19 @@ I am confident that I can leverage my expertise to assist you in developing and
|
|
48 |
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
49 |
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
50 |
|
51 |
-
# Implement more sophisticated logic here based on chat history and workspace projects
|
52 |
-
# For example, you could:
|
53 |
-
# - Analyze the chat history to identify the user's goals and suggest relevant actions.
|
54 |
-
# - Check the workspace projects for missing files or dependencies and suggest adding them.
|
55 |
-
# - Use a language model to generate code based on the user's requests.
|
56 |
-
|
57 |
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
58 |
|
59 |
return summary, next_step
|
60 |
|
61 |
def save_agent_to_file(agent):
|
62 |
-
"""Saves the agent's prompt to a file
|
63 |
if not os.path.exists(AGENT_DIRECTORY):
|
64 |
os.makedirs(AGENT_DIRECTORY)
|
65 |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
|
66 |
-
config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt")
|
67 |
with open(file_path, "w") as file:
|
68 |
file.write(agent.create_agent_prompt())
|
69 |
-
with open(config_path, "w") as file:
|
70 |
-
file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}")
|
71 |
st.session_state.available_agents.append(agent.name)
|
72 |
|
73 |
-
commit_and_push_changes(f"Add agent {agent.name}")
|
74 |
-
|
75 |
def load_agent_prompt(agent_name):
|
76 |
"""Loads an agent prompt from a file."""
|
77 |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
@@ -88,13 +75,11 @@ def create_agent_from_text(name, text):
|
|
88 |
save_agent_to_file(agent)
|
89 |
return agent.create_agent_prompt()
|
90 |
|
91 |
-
# Chat interface using a selected agent
|
92 |
def chat_interface_with_agent(input_text, agent_name):
|
93 |
agent_prompt = load_agent_prompt(agent_name)
|
94 |
if agent_prompt is None:
|
95 |
return f"Agent {agent_name} not found."
|
96 |
|
97 |
-
# Load the GPT-2 model which is compatible with AutoModelForCausalLM
|
98 |
model_name = "gpt2"
|
99 |
try:
|
100 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
@@ -103,31 +88,27 @@ def chat_interface_with_agent(input_text, agent_name):
|
|
103 |
except EnvironmentError as e:
|
104 |
return f"Error loading model: {e}"
|
105 |
|
106 |
-
# Combine the agent prompt with user input
|
107 |
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
|
108 |
|
109 |
-
# Truncate input text to avoid exceeding the model's maximum length
|
110 |
-
max_input_length = 900
|
111 |
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
|
|
|
112 |
if input_ids.shape[1] > max_input_length:
|
113 |
input_ids = input_ids[:, :max_input_length]
|
114 |
|
115 |
-
# Generate chatbot response
|
116 |
outputs = model.generate(
|
117 |
-
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True,
|
|
|
118 |
)
|
119 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
120 |
return response
|
121 |
|
122 |
def workspace_interface(project_name):
|
123 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
124 |
if not os.path.exists(PROJECT_ROOT):
|
125 |
os.makedirs(PROJECT_ROOT)
|
|
|
126 |
if not os.path.exists(project_path):
|
127 |
os.makedirs(project_path)
|
128 |
st.session_state.workspace_projects[project_name] = {"files": []}
|
129 |
-
st.session_state.current_state['workspace_chat']['project_name'] = project_name
|
130 |
-
commit_and_push_changes(f"Create project {project_name}")
|
131 |
return f"Project {project_name} created successfully."
|
132 |
else:
|
133 |
return f"Project {project_name} already exists."
|
@@ -139,8 +120,6 @@ def add_code_to_workspace(project_name, code, file_name):
|
|
139 |
with open(file_path, "w") as file:
|
140 |
file.write(code)
|
141 |
st.session_state.workspace_projects[project_name]["files"].append(file_name)
|
142 |
-
st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code}
|
143 |
-
commit_and_push_changes(f"Add code to {file_name} in project {project_name}")
|
144 |
return f"Code added to {file_name} in project {project_name} successfully."
|
145 |
else:
|
146 |
return f"Project {project_name} does not exist."
|
@@ -153,58 +132,42 @@ def terminal_interface(command, project_name=None):
|
|
153 |
result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
|
154 |
else:
|
155 |
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
|
|
156 |
if result.returncode == 0:
|
157 |
-
st.session_state.current_state['toolbox']['terminal_output'] = result.stdout
|
158 |
return result.stdout
|
159 |
else:
|
160 |
-
st.session_state.current_state['toolbox']['terminal_output'] = result.stderr
|
161 |
return result.stderr
|
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
def summarize_text(text):
|
164 |
summarizer = pipeline("summarization")
|
165 |
summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
|
166 |
-
st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text']
|
167 |
return summary[0]['summary_text']
|
168 |
|
169 |
def sentiment_analysis(text):
|
170 |
analyzer = pipeline("sentiment-analysis")
|
171 |
sentiment = analyzer(text)
|
172 |
-
st.session_state.current_state['toolbox']['sentiment'] = sentiment[0]
|
173 |
return sentiment[0]
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
def generate_code(code_idea):
|
178 |
-
# Replace this with a call to a Hugging Face model or your own logic
|
179 |
-
# For example, using a text-generation pipeline:
|
180 |
-
generator = pipeline('text-generation', model='gpt4o')
|
181 |
-
generated_code = generator(code_idea, max_length=10000, num_return_sequences=1)[0]['generated_text']
|
182 |
-
messages=[
|
183 |
-
{"role": "system", "content": "You are an expert software developer."},
|
184 |
-
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
|
185 |
-
]
|
186 |
-
st.session_state.current_state['toolbox']['generated_code'] = generated_code
|
187 |
-
|
188 |
-
return generated_code
|
189 |
-
|
190 |
-
def translate_code(code, input_language, output_language):
|
191 |
-
# Define a dictionary to map programming languages to their corresponding file extensions
|
192 |
-
language_extensions = {
|
193 |
-
|
194 |
-
}
|
195 |
-
|
196 |
-
# Add code to handle edge cases such as invalid input and unsupported programming languages
|
197 |
-
if input_language not in language_extensions:
|
198 |
-
raise ValueError(f"Invalid input language: {input_language}")
|
199 |
-
if output_language not in language_extensions:
|
200 |
-
raise ValueError(f"Invalid output language: {output_language}")
|
201 |
-
|
202 |
-
# Use the dictionary to map the input and output languages to their corresponding file extensions
|
203 |
-
input_extension = language_extensions[input_language]
|
204 |
-
output_extension = language_extensions[output_language]
|
205 |
-
|
206 |
-
# Translate the code using the OpenAI API
|
207 |
-
prompt = f"Translate this code from {input_language} to {output_language}:\n\n{code}"
|
208 |
response = openai.ChatCompletion.create(
|
209 |
model="gpt-4",
|
210 |
messages=[
|
@@ -212,12 +175,7 @@ def translate_code(code, input_language, output_language):
|
|
212 |
{"role": "user", "content": prompt}
|
213 |
]
|
214 |
)
|
215 |
-
|
216 |
-
|
217 |
-
# Return the translated code
|
218 |
-
translated_code = response.choices[0].message['content'].strip()
|
219 |
-
st.session_state.current_state['toolbox']['translated_code'] = translated_code
|
220 |
-
return translated_code
|
221 |
|
222 |
def generate_code(code_idea):
|
223 |
response = openai.ChatCompletion.create(
|
@@ -227,32 +185,14 @@ def generate_code(code_idea):
|
|
227 |
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
|
228 |
]
|
229 |
)
|
230 |
-
|
231 |
-
st.session_state.current_state['toolbox']['generated_code'] = generated_code
|
232 |
-
return generated_code
|
233 |
-
|
234 |
-
def commit_and_push_changes(commit_message):
|
235 |
-
"""Commits and pushes changes to the Hugging Face repository."""
|
236 |
-
commands = [
|
237 |
-
"git add .",
|
238 |
-
f"git commit -m '{commit_message}'",
|
239 |
-
"git push"
|
240 |
-
]
|
241 |
-
for command in commands:
|
242 |
-
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
243 |
-
if result.returncode != 0:
|
244 |
-
st.error(f"Error executing command '{command}': {result.stderr}")
|
245 |
-
break
|
246 |
|
247 |
-
# Streamlit App
|
248 |
st.title("AI Agent Creator")
|
249 |
|
250 |
-
# Sidebar navigation
|
251 |
st.sidebar.title("Navigation")
|
252 |
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
253 |
|
254 |
if app_mode == "AI Agent Creator":
|
255 |
-
# AI Agent Creator
|
256 |
st.header("Create an AI Agent from Text")
|
257 |
|
258 |
st.subheader("From Text")
|
@@ -264,23 +204,20 @@ if app_mode == "AI Agent Creator":
|
|
264 |
st.session_state.available_agents.append(agent_name)
|
265 |
|
266 |
elif app_mode == "Tool Box":
|
267 |
-
# Tool Box
|
268 |
st.header("AI-Powered Tools")
|
269 |
|
270 |
-
# Chat Interface
|
271 |
st.subheader("Chat with CodeCraft")
|
272 |
chat_input = st.text_area("Enter your message:")
|
273 |
if st.button("Send"):
|
274 |
if chat_input.startswith("@"):
|
275 |
-
agent_name = chat_input.split(" ")[0][1:]
|
276 |
-
chat_input = " ".join(chat_input.split(" ")[1:])
|
277 |
chat_response = chat_interface_with_agent(chat_input, agent_name)
|
278 |
else:
|
279 |
-
chat_response =
|
280 |
st.session_state.chat_history.append((chat_input, chat_response))
|
281 |
st.write(f"CodeCraft: {chat_response}")
|
282 |
|
283 |
-
# Terminal Interface
|
284 |
st.subheader("Terminal")
|
285 |
terminal_input = st.text_input("Enter a command:")
|
286 |
if st.button("Run"):
|
@@ -288,7 +225,6 @@ elif app_mode == "Tool Box":
|
|
288 |
st.session_state.terminal_history.append((terminal_input, terminal_output))
|
289 |
st.code(terminal_output, language="bash")
|
290 |
|
291 |
-
# Code Editor Interface
|
292 |
st.subheader("Code Editor")
|
293 |
code_editor = st.text_area("Write your code:", height=300)
|
294 |
if st.button("Format & Lint"):
|
@@ -296,21 +232,18 @@ elif app_mode == "Tool Box":
|
|
296 |
st.code(formatted_code, language="python")
|
297 |
st.info(lint_message)
|
298 |
|
299 |
-
# Text Summarization Tool
|
300 |
st.subheader("Summarize Text")
|
301 |
text_to_summarize = st.text_area("Enter text to summarize:")
|
302 |
if st.button("Summarize"):
|
303 |
summary = summarize_text(text_to_summarize)
|
304 |
st.write(f"Summary: {summary}")
|
305 |
|
306 |
-
# Sentiment Analysis Tool
|
307 |
st.subheader("Sentiment Analysis")
|
308 |
sentiment_text = st.text_area("Enter text for sentiment analysis:")
|
309 |
if st.button("Analyze Sentiment"):
|
310 |
sentiment = sentiment_analysis(sentiment_text)
|
311 |
st.write(f"Sentiment: {sentiment}")
|
312 |
|
313 |
-
# Text Translation Tool (Code Translation)
|
314 |
st.subheader("Translate Code")
|
315 |
code_to_translate = st.text_area("Enter code to translate:")
|
316 |
source_language = st.text_input("Enter source language (e.g. 'Python'):")
|
@@ -319,14 +252,12 @@ elif app_mode == "Tool Box":
|
|
319 |
translated_code = translate_code(code_to_translate, source_language, target_language)
|
320 |
st.code(translated_code, language=target_language.lower())
|
321 |
|
322 |
-
# Code Generation
|
323 |
st.subheader("Code Generation")
|
324 |
code_idea = st.text_input("Enter your code idea:")
|
325 |
if st.button("Generate Code"):
|
326 |
generated_code = generate_code(code_idea)
|
327 |
st.code(generated_code, language="python")
|
328 |
|
329 |
-
# Display Preset Commands
|
330 |
st.subheader("Preset Commands")
|
331 |
preset_commands = {
|
332 |
"Create a new project": "create_project('project_name')",
|
@@ -341,17 +272,14 @@ elif app_mode == "Tool Box":
|
|
341 |
st.write(f"{command_name}: `{command}`")
|
342 |
|
343 |
elif app_mode == "Workspace Chat App":
|
344 |
-
# Workspace Chat App
|
345 |
st.header("Workspace Chat App")
|
346 |
|
347 |
-
# Project Workspace Creation
|
348 |
st.subheader("Create a New Project")
|
349 |
project_name = st.text_input("Enter project name:")
|
350 |
if st.button("Create Project"):
|
351 |
workspace_status = workspace_interface(project_name)
|
352 |
st.success(workspace_status)
|
353 |
|
354 |
-
# Add Code to Workspace
|
355 |
st.subheader("Add Code to Workspace")
|
356 |
code_to_add = st.text_area("Enter code to add to workspace:")
|
357 |
file_name = st.text_input("Enter file name (e.g. 'app.py'):")
|
@@ -359,59 +287,55 @@ elif app_mode == "Workspace Chat App":
|
|
359 |
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
|
360 |
st.success(add_code_status)
|
361 |
|
362 |
-
# Terminal Interface with Project Context
|
363 |
st.subheader("Terminal (Workspace Context)")
|
364 |
terminal_input = st.text_input("Enter a command within the workspace:")
|
365 |
if st.button("Run Command"):
|
366 |
terminal_output = terminal_interface(terminal_input, project_name)
|
367 |
st.code(terminal_output, language="bash")
|
368 |
|
369 |
-
# Chat Interface for Guidance
|
370 |
st.subheader("Chat with CodeCraft for Guidance")
|
371 |
chat_input = st.text_area("Enter your message for guidance:")
|
372 |
if st.button("Get Guidance"):
|
373 |
-
chat_response =
|
374 |
st.session_state.chat_history.append((chat_input, chat_response))
|
375 |
st.write(f"CodeCraft: {chat_response}")
|
376 |
|
377 |
-
# Display Chat History
|
378 |
st.subheader("Chat History")
|
379 |
for user_input, response in st.session_state.chat_history:
|
380 |
st.write(f"User: {user_input}")
|
381 |
st.write(f"CodeCraft: {response}")
|
382 |
|
383 |
-
# Display Terminal History
|
384 |
st.subheader("Terminal History")
|
385 |
for command, output in st.session_state.terminal_history:
|
386 |
st.write(f"Command: {command}")
|
387 |
st.code(output, language="bash")
|
388 |
|
389 |
-
# Display Projects and Files
|
390 |
st.subheader("Workspace Projects")
|
391 |
for project, details in st.session_state.workspace_projects.items():
|
392 |
st.write(f"Project: {project}")
|
393 |
for file in details['files']:
|
394 |
st.write(f" - {file}")
|
395 |
|
396 |
-
# Chat with AI Agents
|
397 |
st.subheader("Chat with AI Agents")
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
|
|
|
|
406 |
st.subheader("Automate Build Process")
|
407 |
if st.button("Automate"):
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
st.
|
|
|
1 |
+
import streamlit as st
|
2 |
import os
|
3 |
import subprocess
|
|
|
4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
5 |
import black
|
6 |
from pylint import lint
|
7 |
from io import StringIO
|
8 |
import openai
|
9 |
+
import sys
|
10 |
+
|
11 |
+
# Set your OpenAI API key here
|
12 |
+
openai.api_key = "YOUR_OPENAI_API_KEY"
|
13 |
|
|
|
14 |
PROJECT_ROOT = "projects"
|
15 |
AGENT_DIRECTORY = "agents"
|
16 |
|
|
|
23 |
st.session_state.workspace_projects = {}
|
24 |
if 'available_agents' not in st.session_state:
|
25 |
st.session_state.available_agents = []
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
class AIAgent:
|
28 |
def __init__(self, name, description, skills):
|
|
|
46 |
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
47 |
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
50 |
|
51 |
return summary, next_step
|
52 |
|
53 |
def save_agent_to_file(agent):
|
54 |
+
"""Saves the agent's prompt to a file."""
|
55 |
if not os.path.exists(AGENT_DIRECTORY):
|
56 |
os.makedirs(AGENT_DIRECTORY)
|
57 |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
|
|
|
58 |
with open(file_path, "w") as file:
|
59 |
file.write(agent.create_agent_prompt())
|
|
|
|
|
60 |
st.session_state.available_agents.append(agent.name)
|
61 |
|
|
|
|
|
62 |
def load_agent_prompt(agent_name):
|
63 |
"""Loads an agent prompt from a file."""
|
64 |
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
|
|
75 |
save_agent_to_file(agent)
|
76 |
return agent.create_agent_prompt()
|
77 |
|
|
|
78 |
def chat_interface_with_agent(input_text, agent_name):
|
79 |
agent_prompt = load_agent_prompt(agent_name)
|
80 |
if agent_prompt is None:
|
81 |
return f"Agent {agent_name} not found."
|
82 |
|
|
|
83 |
model_name = "gpt2"
|
84 |
try:
|
85 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
88 |
except EnvironmentError as e:
|
89 |
return f"Error loading model: {e}"
|
90 |
|
|
|
91 |
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
|
92 |
|
|
|
|
|
93 |
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
|
94 |
+
max_input_length = 900
|
95 |
if input_ids.shape[1] > max_input_length:
|
96 |
input_ids = input_ids[:, :max_input_length]
|
97 |
|
|
|
98 |
outputs = model.generate(
|
99 |
+
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True,
|
100 |
+
pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
|
101 |
)
|
102 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
103 |
return response
|
104 |
|
105 |
def workspace_interface(project_name):
|
|
|
106 |
if not os.path.exists(PROJECT_ROOT):
|
107 |
os.makedirs(PROJECT_ROOT)
|
108 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
109 |
if not os.path.exists(project_path):
|
110 |
os.makedirs(project_path)
|
111 |
st.session_state.workspace_projects[project_name] = {"files": []}
|
|
|
|
|
112 |
return f"Project {project_name} created successfully."
|
113 |
else:
|
114 |
return f"Project {project_name} already exists."
|
|
|
120 |
with open(file_path, "w") as file:
|
121 |
file.write(code)
|
122 |
st.session_state.workspace_projects[project_name]["files"].append(file_name)
|
|
|
|
|
123 |
return f"Code added to {file_name} in project {project_name} successfully."
|
124 |
else:
|
125 |
return f"Project {project_name} does not exist."
|
|
|
132 |
result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True)
|
133 |
else:
|
134 |
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
135 |
+
|
136 |
if result.returncode == 0:
|
|
|
137 |
return result.stdout
|
138 |
else:
|
|
|
139 |
return result.stderr
|
140 |
|
141 |
+
def code_editor_interface(code):
|
142 |
+
try:
|
143 |
+
formatted_code = black.format_str(code, mode=black.FileMode())
|
144 |
+
except black.NothingChanged:
|
145 |
+
formatted_code = code
|
146 |
+
|
147 |
+
result = StringIO()
|
148 |
+
sys.stdout = result
|
149 |
+
sys.stderr = result
|
150 |
+
|
151 |
+
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
|
152 |
+
sys.stdout = sys.__stdout__
|
153 |
+
sys.stderr = sys.__stderr__
|
154 |
+
|
155 |
+
lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
|
156 |
+
|
157 |
+
return formatted_code, lint_message
|
158 |
+
|
159 |
def summarize_text(text):
|
160 |
summarizer = pipeline("summarization")
|
161 |
summary = summarizer(text, max_length=50, min_length=25, do_sample=False)
|
|
|
162 |
return summary[0]['summary_text']
|
163 |
|
164 |
def sentiment_analysis(text):
|
165 |
analyzer = pipeline("sentiment-analysis")
|
166 |
sentiment = analyzer(text)
|
|
|
167 |
return sentiment[0]
|
168 |
|
169 |
+
def translate_code(code, source_language, target_language):
|
170 |
+
prompt = f"Translate this code from {source_language} to {target_language}:\n\n{code}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
response = openai.ChatCompletion.create(
|
172 |
model="gpt-4",
|
173 |
messages=[
|
|
|
175 |
{"role": "user", "content": prompt}
|
176 |
]
|
177 |
)
|
178 |
+
return response.choices[0].message['content'].strip()
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
def generate_code(code_idea):
|
181 |
response = openai.ChatCompletion.create(
|
|
|
185 |
{"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"}
|
186 |
]
|
187 |
)
|
188 |
+
return response.choices[0].message['content'].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
|
|
190 |
st.title("AI Agent Creator")
|
191 |
|
|
|
192 |
st.sidebar.title("Navigation")
|
193 |
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
194 |
|
195 |
if app_mode == "AI Agent Creator":
|
|
|
196 |
st.header("Create an AI Agent from Text")
|
197 |
|
198 |
st.subheader("From Text")
|
|
|
204 |
st.session_state.available_agents.append(agent_name)
|
205 |
|
206 |
elif app_mode == "Tool Box":
|
|
|
207 |
st.header("AI-Powered Tools")
|
208 |
|
|
|
209 |
st.subheader("Chat with CodeCraft")
|
210 |
chat_input = st.text_area("Enter your message:")
|
211 |
if st.button("Send"):
|
212 |
if chat_input.startswith("@"):
|
213 |
+
agent_name = chat_input.split(" ")[0][1:]
|
214 |
+
chat_input = " ".join(chat_input.split(" ")[1:])
|
215 |
chat_response = chat_interface_with_agent(chat_input, agent_name)
|
216 |
else:
|
217 |
+
chat_response = "Chat interface function not provided."
|
218 |
st.session_state.chat_history.append((chat_input, chat_response))
|
219 |
st.write(f"CodeCraft: {chat_response}")
|
220 |
|
|
|
221 |
st.subheader("Terminal")
|
222 |
terminal_input = st.text_input("Enter a command:")
|
223 |
if st.button("Run"):
|
|
|
225 |
st.session_state.terminal_history.append((terminal_input, terminal_output))
|
226 |
st.code(terminal_output, language="bash")
|
227 |
|
|
|
228 |
st.subheader("Code Editor")
|
229 |
code_editor = st.text_area("Write your code:", height=300)
|
230 |
if st.button("Format & Lint"):
|
|
|
232 |
st.code(formatted_code, language="python")
|
233 |
st.info(lint_message)
|
234 |
|
|
|
235 |
st.subheader("Summarize Text")
|
236 |
text_to_summarize = st.text_area("Enter text to summarize:")
|
237 |
if st.button("Summarize"):
|
238 |
summary = summarize_text(text_to_summarize)
|
239 |
st.write(f"Summary: {summary}")
|
240 |
|
|
|
241 |
st.subheader("Sentiment Analysis")
|
242 |
sentiment_text = st.text_area("Enter text for sentiment analysis:")
|
243 |
if st.button("Analyze Sentiment"):
|
244 |
sentiment = sentiment_analysis(sentiment_text)
|
245 |
st.write(f"Sentiment: {sentiment}")
|
246 |
|
|
|
247 |
st.subheader("Translate Code")
|
248 |
code_to_translate = st.text_area("Enter code to translate:")
|
249 |
source_language = st.text_input("Enter source language (e.g. 'Python'):")
|
|
|
252 |
translated_code = translate_code(code_to_translate, source_language, target_language)
|
253 |
st.code(translated_code, language=target_language.lower())
|
254 |
|
|
|
255 |
st.subheader("Code Generation")
|
256 |
code_idea = st.text_input("Enter your code idea:")
|
257 |
if st.button("Generate Code"):
|
258 |
generated_code = generate_code(code_idea)
|
259 |
st.code(generated_code, language="python")
|
260 |
|
|
|
261 |
st.subheader("Preset Commands")
|
262 |
preset_commands = {
|
263 |
"Create a new project": "create_project('project_name')",
|
|
|
272 |
st.write(f"{command_name}: `{command}`")
|
273 |
|
274 |
elif app_mode == "Workspace Chat App":
|
|
|
275 |
st.header("Workspace Chat App")
|
276 |
|
|
|
277 |
st.subheader("Create a New Project")
|
278 |
project_name = st.text_input("Enter project name:")
|
279 |
if st.button("Create Project"):
|
280 |
workspace_status = workspace_interface(project_name)
|
281 |
st.success(workspace_status)
|
282 |
|
|
|
283 |
st.subheader("Add Code to Workspace")
|
284 |
code_to_add = st.text_area("Enter code to add to workspace:")
|
285 |
file_name = st.text_input("Enter file name (e.g. 'app.py'):")
|
|
|
287 |
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
|
288 |
st.success(add_code_status)
|
289 |
|
|
|
290 |
st.subheader("Terminal (Workspace Context)")
|
291 |
terminal_input = st.text_input("Enter a command within the workspace:")
|
292 |
if st.button("Run Command"):
|
293 |
terminal_output = terminal_interface(terminal_input, project_name)
|
294 |
st.code(terminal_output, language="bash")
|
295 |
|
|
|
296 |
st.subheader("Chat with CodeCraft for Guidance")
|
297 |
chat_input = st.text_area("Enter your message for guidance:")
|
298 |
if st.button("Get Guidance"):
|
299 |
+
chat_response = "Chat interface function not provided."
|
300 |
st.session_state.chat_history.append((chat_input, chat_response))
|
301 |
st.write(f"CodeCraft: {chat_response}")
|
302 |
|
|
|
303 |
st.subheader("Chat History")
|
304 |
for user_input, response in st.session_state.chat_history:
|
305 |
st.write(f"User: {user_input}")
|
306 |
st.write(f"CodeCraft: {response}")
|
307 |
|
|
|
308 |
st.subheader("Terminal History")
|
309 |
for command, output in st.session_state.terminal_history:
|
310 |
st.write(f"Command: {command}")
|
311 |
st.code(output, language="bash")
|
312 |
|
|
|
313 |
st.subheader("Workspace Projects")
|
314 |
for project, details in st.session_state.workspace_projects.items():
|
315 |
st.write(f"Project: {project}")
|
316 |
for file in details['files']:
|
317 |
st.write(f" - {file}")
|
318 |
|
|
|
319 |
st.subheader("Chat with AI Agents")
|
320 |
+
if st.session_state.available_agents:
|
321 |
+
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
|
322 |
+
agent_chat_input = st.text_area("Enter your message for the agent:")
|
323 |
+
if st.button("Send to Agent"):
|
324 |
+
agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
|
325 |
+
st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
|
326 |
+
st.write(f"{selected_agent}: {agent_chat_response}")
|
327 |
+
else:
|
328 |
+
st.write("No agents available. Please create an agent first.")
|
329 |
+
|
330 |
st.subheader("Automate Build Process")
|
331 |
if st.button("Automate"):
|
332 |
+
if st.session_state.available_agents:
|
333 |
+
selected_agent = st.session_state.available_agents[0]
|
334 |
+
agent = AIAgent(selected_agent, "", [])
|
335 |
+
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
|
336 |
+
st.write("Autonomous Build Summary:")
|
337 |
+
st.write(summary)
|
338 |
+
st.write("Next Step:")
|
339 |
+
st.write(next_step)
|
340 |
+
else:
|
341 |
+
st.write("No agents available. Please create an agent first.")
|