import streamlit as st import os import subprocess import random import string from huggingface_hub import cached_download, hf_hub_url from transformers import pipeline import black import pylint # Define functions for each feature # 1. Chat Interface def chat_interface(input_text): """Handles user input in the chat interface. Args: input_text: User's input text. Returns: The chatbot's response. """ # Load the appropriate language model from Hugging Face model_name = 'google/flan-t5-xl' # Choose a suitable model model_url = hf_hub_url(repo_id=model_name, revision='main', filename='config.json') model_path = cached_download(model_url) generator = pipeline('text-generation', model=model_path) # Generate chatbot response response = generator(input_text, max_length=50, num_return_sequences=1, do_sample=True)[0]['generated_text'] return response # 2. Terminal def terminal_interface(command): """Executes commands in the terminal. Args: command: User's command. Returns: The terminal output. """ # Execute command try: process = subprocess.run(command.split(), capture_output=True, text=True) output = process.stdout except Exception as e: output = f'Error: {e}' return output # 3. Code Editor def code_editor_interface(code): """Provides code completion, formatting, and linting in the code editor. Args: code: User's code. Returns: Formatted and linted code. """ # Format code using black try: formatted_code = black.format_str(code, mode=black.FileMode()) except black.InvalidInput: formatted_code = code # Keep original code if formatting fails # Lint code using pylint try: pylint_output = pylint.run(formatted_code, output=None) lint_results = pylint_output.linter.stats.get('global_note', 0) lint_message = f"Pylint score: {lint_results:.2f}" except Exception as e: lint_message = f"Pylint error: {e}" return formatted_code, lint_message # 4. Workspace def workspace_interface(project_name): """Manages projects, files, and resources in the workspace. Args: project_name: Name of the new project. Returns: Project creation status. """ # Create project directory try: os.makedirs(os.path.join('projects', project_name)) status = f'Project \"{project_name}\" created successfully.' except FileExistsError: status = f'Project \"{project_name}\" already exists.' return status # 5. AI-Infused Tools # Define custom AI-powered tools using Hugging Face models # Example: Text summarization tool def summarize_text(text): """Summarizes a given text using a Hugging Face model. Args: text: Text to be summarized. Returns: Summarized text. """ summarizer = pipeline('summarization', model='facebook/bart-large-cnn') summary = summarizer(text, max_length=100, min_length=30)[0]['summary_text'] return summary # Streamlit App st.title("CodeCraft: Your AI-Powered Development Toolkit") # Chat Interface st.header("Chat with CodeCraft") chat_input = st.text_area("Enter your message:") if st.button("Send"): chat_response = chat_interface(chat_input) st.write(f"CodeCraft: {chat_response}") # Terminal Interface st.header("Terminal") terminal_input = st.text_input("Enter a command:") if st.button("Run"): terminal_output = terminal_interface(terminal_input) st.code(terminal_output, language="bash") # Code Editor Interface st.header("Code Editor") code_editor = st.text_area("Write your code:", language="python", height=300) if st.button("Format & Lint"): formatted_code, lint_message = code_editor_interface(code_editor) st.code(formatted_code, language="python") st.info(lint_message) # Workspace Interface st.header("Workspace") project_name = st.text_input("Enter project name:") if st.button("Create Project"): workspace_status = workspace_interface(project_name) st.success(workspace_status) # AI-Infused Tools st.header("AI-Powered Tools") text_to_summarize = st.text_area("Enter text to summarize:") if st.button("Summarize"): summary = summarize_text(text_to_summarize) st.write(f"Summary: {summary}")