import os import sys import subprocess import base64 import json from io import StringIO from typing import Dict, List import streamlit as st from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer from pylint import lint # Replace st.secrets with os.environ hf_token = os.environ.get("huggingface_token") if not hf_token: st.error("Hugging Face API key not found. Please set the HUGGINGFACE_API_KEY environment variable.") st.stop() # Rest of your code here st.write("Hugging Face API key successfully loaded!") # Rest of your code here st.write("Hugging Face API key successfully loaded!") # Global state to manage communication between Tool Box and Workspace Chat App if "chat_history" not in st.session_state: st.session_state.chat_history = [] if "terminal_history" not in st.session_state: st.session_state.terminal_history = [] if "workspace_projects" not in st.session_state: st.session_state.workspace_projects = {} # Load pre-trained RAG retriever rag_retriever = pipeline("retrieval-question-answering", model="facebook/rag-token-base") # Load pre-trained chat model chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium") # Load tokenizer tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") def process_input(user_input: str) -> str: # Input pipeline: Tokenize and preprocess user input input_ids = tokenizer(user_input, return_tensors="pt").input_ids attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask # RAG model: Generate response with torch.no_grad(): output = rag_retriever(input_ids, attention_mask=attention_mask) response = output.generator_outputs[0].sequences[0] # Chat model: Refine response chat_input = tokenizer(response, return_tensors="pt") chat_input["input_ids"] = chat_input["input_ids"].unsqueeze(0) chat_input["attention_mask"] = chat_input["attention_mask"].unsqueeze(0) with torch.no_grad(): chat_output = chat_model(**chat_input) refined_response = chat_output.sequences[0] # Output pipeline: Return final response return refined_response class AIAgent: def __init__(self, name: str, description: str, skills: List[str], hf_api=None): self.name = name self.description = description self.skills = skills self._hf_api = hf_api self._hf_token = hf_token @property def hf_api(self): if not self._hf_api and self.has_valid_hf_token(): self._hf_api = HfApi(token=self._hf_token) return self._hf_api def has_valid_hf_token(self): return bool(self._hf_token) async def autonomous_build(self, chat_history: List[str], workspace_projects: Dict[str, str], project_name: str, selected_model: str): # Continuation of previous methods summary = "Chat History:\n" + "\n".join(chat_history) summary += "\n\nWorkspace Projects:\n" + "\n".join(workspace_projects.items()) # Analyze chat history and workspace projects to suggest actions # Example: # - Check if the user has requested to create a new file # - Check if the user has requested to install a package # - Check if the user has requested to run a command # - Check if the user has requested to generate code # - Check if the user has requested to translate code # - Check if the user has requested to summarize text # - Check if the user has requested to analyze sentiment # Generate a response based on the analysis next_step = "Based on the current state, the next logical step is to implement the main application logic." # Ensure project folder exists project_path = os.path.join(PROJECT_ROOT, project_name) if not os.path.exists(project_path): os.makedirs(project_path) # Create requirements.txt if it doesn't exist requirements_file = os.path.join(project_path, "requirements.txt") if not os.path.exists(requirements_file): with open(requirements_file, "w") as f: f.write("# Add your project's dependencies here\n") # Create app.py if it doesn't exist app_file = os.path.join(project_path, "app.py") if not os.path.exists(app_file): with open(app_file, "w") as f: f.write("# Your project's main application logic goes here\n") # Generate GUI code for app.py if requested if "create a gui" in summary.lower(): gui_code = generate_code( "Create a simple GUI for this application", selected_model) with open(app_file, "a") as f: f.write(gui_code) # Run the default build process build_command = "pip install -r requirements.txt && python app.py" try: result = subprocess.run( build_command, shell=True, capture_output=True, text=True, cwd=project_path) st.write(f"Build Output:\n{result.stdout}") if result.stderr: st.error(f"Build Errors:\n{result.stderr}") except Exception as e: st.error(f"Build Error: {e}") return summary, next_step def get_built_space_files() -> Dict[str, str]: # Replace with your logic to gather the files you want to deploy return { "app.py": "# Your Streamlit app code here", "requirements.txt": "streamlit\ntransformers" # Add other files as needed } def save_agent_to_file(agent: AIAgent): """Saves the agent's prompt to a file.""" if not os.path.exists(AGENT_DIRECTORY): os.makedirs(AGENT_DIRECTORY) file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt") with open(file_path, "w") as file: file.write(agent.create_agent_prompt()) st.session_state.available_agents.append(agent.name) def load_agent_prompt(agent_name: str) -> str: """Loads an agent prompt from a file.""" file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt") if os.path.exists(file_path): with open(file_path, "r") as file: agent_prompt = file.read() return agent_prompt else: return None def create_agent_from_text(name: str, text: str) -> str: skills = text.split("\n") agent = AIAgent(name, "AI agent created from text input.", skills) save_agent_to_file(agent) return agent.create_agent_prompt() def chat_interface_with_agent(input_text: str, agent_name: str) -> str: agent_prompt = load_agent_prompt(agent_name) if agent_prompt is None: return f"Agent {agent_name} not found." model_name = "MaziyarPanahi/Codestral-22B-v0.1-GGUF" try: generator = pipeline("text-generation", model=model_name) generator.tokenizer.pad_token = generator.tokenizer.eos_token generated_response = generator( f"{agent_prompt}\n\nUser: {input_text}\nAgent:", max_length=100, do_sample=True, top_k=50)[0]["generated_text"] return generated_response except Exception as e: return f"Error loading model: {e}" def terminal_interface(command: str, project_name: str = None) -> str: if project_name: project_path = os.path.join(PROJECT_ROOT, project_name) if not os.path.exists(project_path): return f"Project {project_name} does not exist." result = subprocess.run( command, shell=True, capture_output=True, text=True, cwd=project_path) else: result = subprocess.run(command, shell=True, capture_output=True, text=True) return result.stdout def code_editor_interface(code: str) -> str: try: formatted_code = black.format_str(code, mode=black.FileMode()) except black.NothingChanged: formatted_code = code result = StringIO() sys.stdout = result sys.stderr = result (pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True) sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue() return formatted_code, lint_message def summarize_text(text: str) -> str: summarizer = pipeline("summarization") summary = summarizer(text, max_length=130, min_length=30, do_sample=False) return summary[0]['summary_text'] def sentiment_analysis(text: str) -> str: analyzer = pipeline("sentiment-analysis") result = analyzer(text) return result[0]['label'] def translate_code(code: str, source_language: str, target_language: str) -> str: # Use a Hugging Face translation model instead of OpenAI # Example: English to Spanish translator = pipeline( "translation", model="bartowski/Codestral-22B-v0.1-GGUF") translated_code = translator(code, target_lang=target_language)[0]['translation_text'] return translated_code def generate_code(code_idea: str, model_name: str) -> str: """Generates code using the selected model.""" try: generator = pipeline('text-generation', model=model_name) generated_code = generator(code_idea, max_length=1000, num_return_sequences=1)[0]['generated_text'] return generated_code except Exception as e: return f"Error generating code: {e}" def chat_interface(input_text: str) -> str: """Handles general chat interactions with the user.""" # Use a Hugging Face chatbot model or your own logic chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium") response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text'] return response def workspace_interface(project_name: str) -> str: project_path = os.path.join(PROJECT_ROOT, project_name) if not os.path.exists(project_path): os.makedirs(project_path) st.session_state.workspace_projects[project_name] = {'files': []} return f"Project '{project_name}' created successfully." else: return f"Project '{project_name}' already exists." def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str: project_path = os.path.join(PROJECT_ROOT, project_name) if not os.path.exists(project_path): return f"Project '{project_name}' does not exist." file_path = os.path.join(project_path, file_name) with open(file_path, "w") as file: file.write(code) st.session_state.workspace_projects[project_name]['files'].append(file_name) return f"Code added to '{file_name}' in project '{project_name}'." def create_space_on_hugging_face(api, name, description, public, files, entrypoint="launch.py"): url = f"{hf_hub_url()}spaces/{name}/prepare-repo" headers = {"Authorization": f"Bearer {api.access_token}"} payload = { "public": public, "gitignore_template": "web", "default_branch": "main", "archived": False, "files": [] } for filename, contents in files.items(): data = { "content": contents, "path": filename, "encoding": "utf-8", "mode": "overwrite" } payload["files"].append(data) response = requests.post(url, json=payload, headers=headers) response.raise_for_status() location = response.headers.get("Location") # wait_for_processing(location, api) # You might need to implement this if it's not already defined return Repository(name=name, api=api) # Streamlit App st.title("AI Agent Creator") # Sidebar navigation st.sidebar.title("Navigation") app_mode = st.sidebar.selectbox( "Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"]) if app_mode == "AI Agent Creator": # AI Agent Creator st.header("Create an AI Agent from Text") st.subheader("From Text") agent_name = st.text_input("Enter agent name:") text_input = st.text_area("Enter skills (one per line):") if st.button("Create Agent"): agent_prompt = create_agent_from_text(agent_name, text_input) st.success(f"Agent '{agent_name}' created and saved successfully.") st.session_state.available_agents.append(agent_name) elif app_mode == "Tool Box": # Tool Box st.header("AI-Powered Tools") # Chat Interface st.subheader("Chat with CodeCraft") chat_input = st.text_area("Enter your message:") if st.button("Send"): chat_response = chat_interface(chat_input) st.session_state.chat_history.append((chat_input, chat_response)) st.write(f"CodeCraft: {chat_response}") # Terminal Interface st.subheader("Terminal") terminal_input = st.text_input("Enter a command:") if st.button("Run"): terminal_output = terminal_interface(terminal_input) st.session_state.terminal_history.append( (terminal_input, terminal_output)) st.code(terminal_output, language="bash") # Code Editor Interface st.subheader("Code Editor") code_editor = st.text_area("Write your code:", height=300) if st.button("Format & Lint"): formatted_code, lint_message = code_editor_interface(code_editor) st.code(formatted_code, language="python") st.info(lint_message) # Text Summarization Tool st.subheader("Summarize Text") text_to_summarize = st.text_area("Enter text to summarize:") if st.button("Summarize"): summary = summarize_text(text_to_summarize) st.write(f"Summary: {summary}") # Sentiment Analysis Tool st.subheader("Sentiment Analysis") sentiment_text = st.text_area("Enter text for sentiment analysis:") if st.button("Analyze Sentiment"): sentiment = sentiment_analysis(sentiment_text) st.write(f"Sentiment: {sentiment}") # Text Translation Tool (Code Translation) st.subheader("Translate Code") code_to_translate = st.text_area("Enter code to translate:") source_language = st.text_input("Enter source language (e.g., 'Python'):") target_language = st.text_input( "Enter target language (e.g., 'JavaScript'):") if st.button("Translate Code"): translated_code = translate_code( code_to_translate, source_language, target_language) st.code(translated_code, language=target_language.lower()) # Code Generation st.subheader("Code Generation") code_idea = st.text_input("Enter your code idea:") if st.button("Generate Code"): generated_code = generate_code(code_idea) st.code(generated_code, language="python") elif app_mode == "Workspace Chat App": # Workspace Chat App st.header("Workspace Chat App") # Project Workspace Creation st.subheader("Create a New Project") project_name = st.text_input("Enter project name:") if st.button("Create Project"): workspace_status = workspace_interface(project_name) st.success(workspace_status) # Automatically create requirements.txt and app.py project_path = os.path.join(PROJECT_ROOT, project_name) requirements_file = os.path.join(project_path, "requirements.txt") if not os.path.exists(requirements_file): with open(requirements_file, "w") as f: f.write("# Add your project's dependencies here\n") app_file = os.path.join(project_path, "app.py") if not os.path.exists(app_file): with open(app_file, "w") as f: f.write("# Your project's main application logic goes here\n") # Add Code to Workspace st.subheader("Add Code to Workspace") code_to_add = st.text_area("Enter code to add to workspace:") file_name = st.text_input("Enter file name (e.g., 'app.py'):") if st.button("Add Code"): add_code_status = add_code_to_workspace( project_name, code_to_add, file_name) st.session_state.terminal_history.append( (f"Add Code: {code_to_add}", add_code_status)) st.success(add_code_status) # Terminal Interface with Project Context st.subheader("Terminal (Workspace Context)") terminal_input = st.text_input("Enter a command within the workspace:") if st.button("Run Command"): terminal_output = terminal_interface(terminal_input, project_name) st.session_state.terminal_history.append( (terminal_input, terminal_output)) st.code(terminal_output, language="bash") # Chat Interface for Guidance st.subheader("Chat with CodeCraft for Guidance") chat_input = st.text_area("Enter your message for guidance:") if st.button("Get Guidance"): chat_response = chat_interface(chat_input) st.session_state.chat_history.append((chat_input, chat_response)) st.write(f"CodeCraft: {chat_response}") # Display Chat History st.subheader("Chat History") for user_input, response in st.session_state.chat_history: st.write(f"User: {user_input}") st.write(f"CodeCraft: {response}") # Display Terminal History st.subheader("Terminal History") for command, output in st.session_state.terminal_history: st.write(f"Command: {command}") st.code(output, language="bash") # Display Projects and Files st.subheader("Workspace Projects") for project, details in st.session_state.workspace_projects.items(): st.write(f"Project: {project}") for file in details['files']: st.write(f" - {file}") # Chat with AI Agents st.subheader("Chat with AI Agents") selected_agent = st.selectbox( "Select an AI agent", st.session_state.available_agents) agent_chat_input = st.text_area("Enter your message for the agent:") if st.button("Send to Agent"): agent_chat_response = chat_interface_with_agent( agent_chat_input, selected_agent) st.session_state.chat_history.append( (agent_chat_input, agent_chat_response)) st.write(f"{selected_agent}: {agent_chat_response}") # Code Generation st.subheader("Code Generation") code_idea = st.text_input("Enter your code idea:") # Model Selection Menu selected_model = st.selectbox( "Select a code-generative model", AVAILABLE_CODE_GENERATIVE_MODELS) if st.button("Generate Code"): generated_code = generate_code(code_idea, selected_model) st.code(generated_code, language="python") # Automate Build Process st.subheader("Automate Build Process") if st.button("Automate"): # Load the agent without skills for now agent = AIAgent(selected_agent, "", []) summary, next_step = agent.autonomous_build( st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model) st.write("Autonomous Build Summary:") st.write(summary) st.write("Next Step:") st.write(next_step) # If everything went well, proceed to deploy the Space if agent._hf_api and agent.has_valid_hf_token(): agent.deploy_built_space_to_hf() # Use the hf_token to interact with the Hugging Face API api = HfApi(token="hf_token") # Function to create a Space on Hugging Face create_space_on_hugging_face(api, agent.name, agent.description, True, get_built_space_files())