import os import subprocess import streamlit as st from pylint import lint from io import StringIO import streamlit as st import os import subprocess from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import black Returns: The chatbot's response. """ # Load the GPT-2 model which is compatible with AutoModelForCausalLM model_name = 'gpt2' try: model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit" PROJECT_ROOT = "projects" AGENT_DIRECTORY = "agents" # Global state to manage communication between Tool Box and Workspace Chat App if 'chat_history' not in st.session_state: st.session_state.chat_history = [] if 'terminal_history' not in st.session_state: st.session_state.terminal_history = [] if 'workspace_projects' not in st.session_state: st.session_state.workspace_projects = {} if 'available_agents' not in st.session_state: st.session_state.available_agents = [] if 'current_state' not in st.session_state: st.session_state.current_state = { 'toolbox': {}, 'workspace_chat': {} } class AIAgent: def __init__(self, name, description, skills): self.name = name self.description = description self.skills = skills def create_agent_prompt(self): skills_str = '\n'.join([f"* {skill}" for skill in self.skills]) agent_prompt = f""" As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas: {skills_str} I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter. """ return agent_prompt def autonomous_build(self, chat_history, workspace_projects): """ Autonomous build logic that continues based on the state of chat history and workspace projects. """ summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history]) summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()]) next_step = "Based on the current state, the next logical step is to implement the main application logic." return summary, next_step def save_agent_to_file(agent): """Saves the agent's prompt to a file locally and then commits to the Hugging Face repository.""" if not os.path.exists(AGENT_DIRECTORY): os.makedirs(AGENT_DIRECTORY) file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt") config_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}Config.txt") with open(file_path, "w") as file: file.write(agent.create_agent_prompt()) with open(config_path, "w") as file: file.write(f"Agent Name: {agent.name}\nDescription: {agent.description}") st.session_state.available_agents.append(agent.name) commit_and_push_changes(f"Add agent {agent.name}") def load_agent_prompt(agent_name): """Loads an agent prompt from a file.""" file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt") if os.path.exists(file_path): with open(file_path, "r") as file: agent_prompt = file.read() return agent_prompt else: return None def create_agent_from_text(name, text): skills = text.split('\n') agent = AIAgent(name, "AI agent created from text input.", skills) save_agent_to_file(agent) return agent.create_agent_prompt() # Chat interface using a selected agent def chat_interface_with_agent(input_text, agent_name): agent_prompt = load_agent_prompt(agent_name) if agent_prompt is None: return f"Agent {agent_name} not found." # Load the GPT-2 model which is compatible with AutoModelForCausalLM model_name = "gpt2" try: model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) generator = pipeline("text-generation", model=model, tokenizer=tokenizer) except EnvironmentError as e: return f"Error loading model: {e}" # Combine the agent prompt with user input combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:" # Truncate input text to avoid exceeding the model's maximum length max_input_length = 900 input_ids = tokenizer.encode(combined_input, return_tensors="pt") if input_ids.shape[1] > max_input_length: input_ids = input_ids[:, :max_input_length] # Generate chatbot response outputs = model.generate( input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True, pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response def workspace_interface(project_name): project_path = os.path.join(PROJECT_ROOT, project_name) if not os.path.exists(PROJECT_ROOT): os.makedirs(PROJECT_ROOT) if not os.path.exists(project_path): os.makedirs(project_path) st.session_state.workspace_projects[project_name] = {"files": []} st.session_state.current_state['workspace_chat']['project_name'] = project_name commit_and_push_changes(f"Create project {project_name}") return f"Project {project_name} created successfully." else: return f"Project {project_name} already exists." def add_code_to_workspace(project_name, code, file_name): project_path = os.path.join(PROJECT_ROOT, project_name) if os.path.exists(project_path): file_path = os.path.join(project_path, file_name) with open(file_path, "w") as file: file.write(code) st.session_state.workspace_projects[project_name]["files"].append(file_name) st.session_state.current_state['workspace_chat']['added_code'] = {"file_name": file_name, "code": code} commit_and_push_changes(f"Add code to {file_name} in project {project_name}") return f"Code added to {file_name} in project {project_name} successfully." else: return f"Project {project_name} does not exist." def terminal_interface(command, project_name=None): if project_name: project_path = os.path.join(PROJECT_ROOT, project_name) if not os.path.exists(project_path): return f"Project {project_name} does not exist." result = subprocess.run(command, cwd=project_path, shell=True, capture_output=True, text=True) else: result = subprocess.run(command, shell=True, capture_output=True, text=True) if result.returncode == 0: st.session_state.current_state['toolbox']['terminal_output'] = result.stdout return result.stdout else: st.session_state.current_state['toolbox']['terminal_output'] = result.stderr return result.stderr def summarize_text(text): summarizer = pipeline("summarization") summary = summarizer(text, max_length=50, min_length=25, do_sample=False) st.session_state.current_state['toolbox']['summary'] = summary[0]['summary_text'] return summary[0]['summary_text'] def sentiment_analysis(text): analyzer = pipeline("sentiment-analysis") sentiment = analyzer(text) st.session_state.current_state['toolbox']['sentiment'] = sentiment[0] return sentiment[0] # ... [rest of the translate_code function, but remove the OpenAI API call and replace it with your own logic] ... def generate_code(code_idea): # Replace this with a call to a Hugging Face model or your own logic # For example, using a text-generation pipeline: generator = pipeline('text-generation', model='gpt4o') generated_code = generator(code_idea, max_length=10000, num_return_sequences=1)[0]['generated_text'] messages=[ {"role": "system", "content": "You are an expert software developer."}, {"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"} ] st.session_state.current_state['toolbox']['generated_code'] = generated_code return generated_code def translate_code(code, input_language, output_language): # Define a dictionary to map programming languages to their corresponding file extensions language_extensions = { "Python": "py", "JavaScript": "js", "Java": "java", "C++": "cpp", "C#": "cs", "Ruby": "rb", "Go": "go", "PHP": "php", "Swift": "swift", "TypeScript": "ts", } # Add code to handle edge cases such as invalid input and unsupported programming languages if input_language not in language_extensions: raise ValueError(f"Invalid input language: {input_language}") if output_language not in language_extensions: raise ValueError(f"Invalid output language: {output_language}") # Use the dictionary to map the input and output languages to their corresponding file extensions input_extension = language_extensions[input_language] output_extension = language_extensions[output_language] # Translate the code using the OpenAI API prompt = f"Translate this code from {input_language} to {output_language}:\n\n{code}" response = openai.ChatCompletion.create( model="gpt-4", messages=[ {"role": "system", "content": "You are an expert software developer."}, {"role": "user", "content": prompt} ] ) translated_code = response.choices[0].message['content'].strip() # Return the translated code translated_code = response.choices[0].message['content'].strip() st.session_state.current_state['toolbox']['translated_code'] = translated_code return translated_code def generate_code(code_idea): response = openai.ChatCompletion.create( model="gpt-4", messages=[ {"role": "system", "content": "You are an expert software developer."}, {"role": "user", "content": f"Generate a Python code snippet for the following idea:\n\n{code_idea}"} ] ) generated_code = response.choices[0].message['content'].strip() st.session_state.current_state['toolbox']['generated_code'] = generated_code return generated_code def commit_and_push_changes(commit_message): """Commits and pushes changes to the Hugging Face repository.""" commands = [ "git add .", f"git commit -m '{commit_message}'", "git push" ] for command in commands: result = subprocess.run(command, shell=True, capture_output=True, text=True) if result.returncode != 0: st.error(f"Error executing command '{command}': {result.stderr}") break # Streamlit App st.title("AI Agent Creator") # Sidebar navigation st.sidebar.title("Navigation") app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"]) if app_mode == "AI Agent Creator": # AI Agent Creator st.header("Create an AI Agent from Text") st.subheader("From Text") agent_name = st.text_input("Enter agent name:") text_input = st.text_area("Enter skills (one per line):") if st.button("Create Agent"): agent_prompt = create_agent_from_text(agent_name, text_input) st.success(f"Agent '{agent_name}' created and saved successfully.") st.session_state.available_agents.append(agent_name) elif app_mode == "Tool Box": # Tool Box st.header("AI-Powered Tools") # Chat Interface st.subheader("Chat with CodeCraft") chat_input = st.text_area("Enter your message:") if st.button("Send"): if chat_input.startswith("@"): agent_name = chat_input.split(" ")[0][1:] # Extract agent_name from @agent_name chat_input = " ".join(chat_input.split(" ")[1:]) # Remove agent_name from input chat_response = chat_interface_with_agent(chat_input, agent_name) else: chat_response = chat_interface(chat_input) st.session_state.chat_history.append((chat_input, chat_response)) st.write(f"CodeCraft: {chat_response}") # Terminal Interface st.subheader("Terminal") terminal_input = st.text_input("Enter a command:") if st.button("Run"): terminal_output = terminal_interface(terminal_input) st.session_state.terminal_history.append((terminal_input, terminal_output)) st.code(terminal_output, language="bash") # Code Editor Interface st.subheader("Code Editor") code_editor = st.text_area("Write your code:", height=300) if st.button("Format & Lint"): formatted_code, lint_message = code_editor_interface(code_editor) st.code(formatted_code, language="python") st.info(lint_message) # Text Summarization Tool st.subheader("Summarize Text") text_to_summarize = st.text_area("Enter text to summarize:") if st.button("Summarize"): summary = summarize_text(text_to_summarize) st.write(f"Summary: {summary}") # Sentiment Analysis Tool st.subheader("Sentiment Analysis") sentiment_text = st.text_area("Enter text for sentiment analysis:") if st.button("Analyze Sentiment"): sentiment = sentiment_analysis(sentiment_text) st.write(f"Sentiment: {sentiment}") # Text Translation Tool (Code Translation) st.subheader("Translate Code") code_to_translate = st.text_area("Enter code to translate:") input_language = st.text_input("Enter input language (e.g. 'Python'):") output_language = st.text_input("Enter output language (e.g. 'JavaScript'):") if st.button("Translate Code"): translated_code = translate_code(code_to_translate, input_language, output_language) st.code(translated_code, language=output_language.lower()) # Code Generation st.subheader("Code Generation") code_idea = st.text_input("Enter your code idea:") if st.button("Generate Code"): generated_code = generate_code(code_idea) st.code(generated_code, language="python") # Display Preset Commands st.subheader("Preset Commands") preset_commands = { "Create a new project": "create_project('project_name')", "Add code to workspace": "add_code_to_workspace('project_name', 'code', 'file_name')", "Run terminal command": "terminal_interface('command', 'project_name')", "Generate code": "generate_code('code_idea')", "Summarize text": "summarize_text('text')", "Analyze sentiment": "sentiment_analysis('text')", "Translate code": "translate_code('code', 'source_language', 'target_language')", } for command_name, command in preset_commands.items(): st.write(f"{command_name}: `{command}`") elif app_mode == "Workspace Chat App": # Workspace Chat App st.header("Workspace Chat App") # Project Workspace Creation st.subheader("Create a New Project") project_name = st.text_input("Enter project name:") if st.button("Create Project"): workspace_status = workspace_interface(project_name) st.success(workspace_status) # Add Code to Workspace st.subheader("Add Code to Workspace") code_to_add = st.text_area("Enter code to add to workspace:") file_name = st.text_input("Enter file name (e.g. 'app.py'):") if st.button("Add Code"): add_code_status = add_code_to_workspace(project_name, code_to_add, file_name) st.success(add_code_status) # Terminal Interface with Project Context st.subheader("Terminal (Workspace Context)") terminal_input = st.text_input("Enter a command within the workspace:") if st.button("Run Command"): terminal_output = terminal_interface(terminal_input, project_name) st.code(terminal_output, language="bash") # Chat Interface for Guidance st.subheader("Chat with CodeCraft for Guidance") chat_input = st.text_area("Enter your message for guidance:") if st.button("Get Guidance"): chat_response = chat_interface(chat_input) st.session_state.chat_history.append((chat_input, chat_response)) st.write(f"CodeCraft: {chat_response}") # Display Chat History st.subheader("Chat History") for user_input, response in st.session_state.chat_history: st.write(f"User: {user_input}") st.write(f"CodeCraft: {response}") # Display Terminal History st.subheader("Terminal History") for command, output in st.session_state.terminal_history: st.write(f"Command: {command}") st.code(output, language="bash") # Display Projects and Files st.subheader("Workspace Projects") for project, details in st.session_state.workspace_projects.items(): st.write(f"Project: {project}") st.write("Files:") for file in details["files"]: st.write(f"- {file}")