Spaces:
Sleeping
Sleeping
File size: 14,983 Bytes
84df34e 9c9ed59 84df34e 44e3c5c 84df34e 9c9ed59 8055050 84df34e e1383ff 84df34e 15267a1 84df34e a65e22e 84df34e a65e22e c6d4a9e 4cb60ac 84df34e 15267a1 84df34e 31ceacf dab37dd 43f15af 31ceacf 43f15af 84df34e 9c9ed59 0dbf789 f16d00a 0dbf789 9c9ed59 daa6574 9c9ed59 05e56df 62cde7b 0740cc4 f20de8c d5e2616 f20de8c d5e2616 f16d00a d816c58 9c9ed59 62cde7b 9c9ed59 ca677a9 9c9ed59 0dbf789 9c9ed59 9cc5276 ca677a9 0dbf789 ca677a9 9c9ed59 4f3177e 9c9ed59 9bae30a 9c9ed59 4f3177e 9c9ed59 7d0b562 9cc5276 7d0b562 f791e50 7d0b562 1afe06d 9c9ed59 fc05708 e1a91d5 fc05708 8055050 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import os
import subprocess
import random
from huggingface_hub import InferenceClient
import gradio as gr
from i_search import google
from i_search import i_search as i_s
from agent import (
ACTION_PROMPT,
ADD_PROMPT,
COMPRESS_HISTORY_PROMPT,
LOG_PROMPT,
LOG_RESPONSE,
MODIFY_PROMPT,
PREFIX,
SEARCH_QUERY,
READ_PROMPT,
TASK_PROMPT,
UNDERSTAND_TEST_RESULTS_PROMPT,
)
from utils import parse_action, parse_file_content, read_python_module_structure
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
############################################
VERBOSE = True
MAX_HISTORY = 100
#MODEL = "gpt-3.5-turbo" # "gpt-4"
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
module_summary,
purpose,
**prompt_kwargs,
):
seed = random.randint(1,1111111111111111)
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=256,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = PREFIX.format(
purpose=purpose,
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
'''
resp = openai.ChatCompletion.create(
model=MODEL,
messages=[
{"role": "system", "content": content},
],
temperature=0.0,
max_tokens=max_tokens,
stop=stop_tokens if stop_tokens else None,
)["choices"][0]["message"]["content"]
'''
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_history(purpose, task, history, directory):
module_summary, _, _ = read_python_module_structure(directory)
resp = run_gpt(
COMPRESS_HISTORY_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=512,
module_summary=module_summary,
purpose=purpose,
task=task,
history=history,
)
history = "observation: {}\n".format(resp)
return history
def call_search(purpose, task, history, directory, action_input):
print("CALLING SEARCH")
if "http" in action_input:
if "<" in action_input:
action_input = action_input.strip("<")
if ">" in action_input:
action_input = action_input.strip(">")
response = i_s(action_input)
#response = google(search_return)
print(response)
history += "observation: search result is: {}\n".format(response)
else:
history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=URL'\n"
return "MAIN", None, history, task
def call_main(purpose, task, history, directory, action_input):
module_summary, _, _ = read_python_module_structure(directory)
resp = run_gpt(
ACTION_PROMPT,
stop_tokens=["observation:", "task:"],
max_tokens=256,
module_summary=module_summary,
purpose=purpose,
task=task,
history=history,
)
lines = resp.strip().strip("\n").split("\n")
for line in lines:
if line == "":
continue
if line.startswith("thought: "):
history += "{}\n".format(line)
elif line.startswith("action: "):
action_name, action_input = parse_action(line)
print (f'ACTION_NAME :: {action_name}')
print (f'ACTION_INPUT :: {action_input}')
history += "{}\n".format(line)
if action_name=="COMPLETE" or action_input=="COMPLETE":
task = "END"
return action_name, action_input, history, task
else:
return action_name, action_input, history, task
else:
history += "observation: my last command caused an ERROR, I need to check the commands syntax, or use a different command\n"
#return action_name, action_input, history, task
#assert False, "unknown action: {}".format(line)
return "MAIN", None, history, task
def call_test(purpose, task, history, directory, action_input):
result = subprocess.run(
["python", "-m", "pytest", "--collect-only", directory],
capture_output=True,
text=True,
)
if result.returncode != 0:
history += "observation: there are no tests! Test should be written in a test folder under {}\n".format(
directory
)
return "MAIN", None, history, task
result = subprocess.run(
["python", "-m", "pytest", directory], capture_output=True, text=True
)
if result.returncode == 0:
history += "observation: tests pass\n"
return "MAIN", None, history, task
module_summary, content, _ = read_python_module_structure(directory)
resp = run_gpt(
UNDERSTAND_TEST_RESULTS_PROMPT,
stop_tokens=[],
max_tokens=256,
module_summary=module_summary,
purpose=purpose,
task=task,
history=history,
stdout=result.stdout[:5000], # limit amount of text
stderr=result.stderr[:5000], # limit amount of text
)
history += "observation: tests failed: {}\n".format(resp)
return "MAIN", None, history, task
def call_set_task(purpose, task, history, directory, action_input):
module_summary, content, _ = read_python_module_structure(directory)
task = run_gpt(
TASK_PROMPT,
stop_tokens=[],
max_tokens=64,
module_summary=module_summary,
purpose=purpose,
task=task,
history=history,
).strip("\n")
history += "observation: task has been updated to: {}\n".format(task)
return "MAIN", None, history, task
def call_read(purpose, task, history, directory, action_input):
if not os.path.exists(action_input):
history += "observation: file does not exist\n"
return "MAIN", None, history, task
module_summary, content, _ = read_python_module_structure(directory)
f_content = (
content[action_input] if content[action_input] else "< document is empty >"
)
resp = run_gpt(
READ_PROMPT,
stop_tokens=[],
max_tokens=256,
module_summary=module_summary,
purpose=purpose,
task=task,
history=history,
file_path=action_input,
file_contents=f_content,
).strip("\n")
history += "observation: {}\n".format(resp)
return "MAIN", None, history, task
def call_modify(purpose, task, history, directory, action_input):
if not os.path.exists(action_input):
history += "observation: file does not exist\n"
return "MAIN", None, history, task
(
module_summary,
content,
_,
) = read_python_module_structure(directory)
f_content = (
content[action_input] if content[action_input] else "< document is empty >"
)
resp = run_gpt(
MODIFY_PROMPT,
stop_tokens=["action:", "thought:", "observation:"],
max_tokens=2048,
module_summary=module_summary,
purpose=purpose,
task=task,
history=history,
file_path=action_input,
file_contents=f_content,
)
new_contents, description = parse_file_content(resp)
if new_contents is None:
history += "observation: failed to modify file\n"
return "MAIN", None, history, task
with open(action_input, "w") as f:
f.write(new_contents)
history += "observation: file successfully modified\n"
history += "observation: {}\n".format(description)
return "MAIN", None, history, task
def call_add(purpose, task, history, directory, action_input):
d = os.path.dirname(action_input)
if not d.startswith(directory):
history += "observation: files must be under directory {}\n".format(directory)
elif not action_input.endswith(".py"):
history += "observation: can only write .py files\n"
else:
if d and not os.path.exists(d):
os.makedirs(d)
if not os.path.exists(action_input):
module_summary, _, _ = read_python_module_structure(directory)
resp = run_gpt(
ADD_PROMPT,
stop_tokens=["action:", "thought:", "observation:"],
max_tokens=2048,
module_summary=module_summary,
purpose=purpose,
task=task,
history=history,
file_path=action_input,
)
new_contents, description = parse_file_content(resp)
if new_contents is None:
history += "observation: failed to write file\n"
return "MAIN", None, history, task
with open(action_input, "w") as f:
f.write(new_contents)
history += "observation: file successfully written\n"
history += "obsertation: {}\n".format(description)
else:
history += "observation: file already exists\n"
return "MAIN", None, history, task
def end_fn(purpose, task, history, directory, action_input):
task = "END"
return "COMPLETE", None, history, task
NAME_TO_FUNC = {
"MAIN": call_main,
"UPDATE-TASK": call_set_task,
"SEARCH": call_search,
"COMPLETE": end_fn,
}
def run_action(purpose, task, history, directory, action_name, action_input):
if action_name == "COMPLETE":
task="END"
return action_name, action_input, history, task
# compress the history when it is long
if len(history.split("\n")) > MAX_HISTORY:
if VERBOSE:
print("COMPRESSING HISTORY")
history = compress_history(purpose, task, history, directory)
assert action_name in NAME_TO_FUNC
print("RUN: ", action_name, action_input)
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
def run(purpose,hist):
print(purpose)
print(hist)
task=None
directory="./"
history = ""
action_name = "UPDATE-TASK" if task is None else "MAIN"
action_input = None
while True:
print("")
print("")
print("---")
print("purpose:", purpose)
print("task:", task)
print("---")
print(history)
print("---")
action_name, action_input, history, task = run_action(
purpose,
task,
history,
directory,
action_name,
action_input,
)
if task == "END":
return history
################################################
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
agents =[
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV"
]
def generate(
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
seed = random.randint(1,1111111111111111)
agent=prompts.WEB_DEV
if agent_name == "WEB_DEV":
agent = prompts.WEB_DEV
if agent_name == "AI_SYSTEM_PROMPT":
agent = prompts.AI_SYSTEM_PROMPT
if agent_name == "PYTHON_CODE_DEV":
agent = prompts.PYTHON_CODE_DEV
system_prompt=agent
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Dropdown(
label="Agents",
choices=[s for s in agents],
value=agents[0],
interactive=True,
),
gr.Textbox(
label="System Prompt",
max_lines=1,
interactive=True,
),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=1048*10,
minimum=0,
maximum=1048*10,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
),
]
examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
]
gr.ChatInterface(
fn=run,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
title="Mixtral 46.7B",
examples=examples,
concurrency_limit=20,
).launch(show_api=False)
|