File size: 14,983 Bytes
84df34e
 
 
9c9ed59
 
84df34e
 
44e3c5c
84df34e
 
 
 
 
 
 
 
 
 
 
 
 
9c9ed59
 
 
8055050
84df34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1383ff
84df34e
 
 
 
15267a1
84df34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a65e22e
84df34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a65e22e
c6d4a9e
 
4cb60ac
84df34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15267a1
84df34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ceacf
dab37dd
43f15af
31ceacf
43f15af
 
84df34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c9ed59
 
 
 
 
 
 
0dbf789
 
 
f16d00a
0dbf789
9c9ed59
daa6574
9c9ed59
05e56df
62cde7b
0740cc4
f20de8c
d5e2616
f20de8c
d5e2616
f16d00a
 
d816c58
9c9ed59
 
 
 
 
 
 
 
 
 
 
62cde7b
9c9ed59
 
ca677a9
9c9ed59
 
 
 
 
 
 
0dbf789
9c9ed59
 
9cc5276
 
 
 
 
 
ca677a9
0dbf789
ca677a9
 
 
9c9ed59
 
 
 
 
 
 
 
 
4f3177e
9c9ed59
 
9bae30a
9c9ed59
4f3177e
9c9ed59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d0b562
9cc5276
7d0b562
f791e50
7d0b562
1afe06d
 
 
 
 
 
 
9c9ed59
fc05708
 
e1a91d5
fc05708
 
 
 
 
8055050
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import os
import subprocess
import random
from huggingface_hub import InferenceClient
import gradio as gr
from i_search import google
from i_search import i_search as i_s
from agent import (
    ACTION_PROMPT,
    ADD_PROMPT,
    COMPRESS_HISTORY_PROMPT,
    LOG_PROMPT,
    LOG_RESPONSE,
    MODIFY_PROMPT,
    PREFIX,
    SEARCH_QUERY,
    READ_PROMPT,
    TASK_PROMPT,
    UNDERSTAND_TEST_RESULTS_PROMPT,
)
from utils import parse_action, parse_file_content, read_python_module_structure
client = InferenceClient(
    "mistralai/Mixtral-8x7B-Instruct-v0.1"
)

############################################


VERBOSE = True
MAX_HISTORY = 100
#MODEL = "gpt-3.5-turbo"  # "gpt-4"


def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt



def run_gpt(
    prompt_template,
    stop_tokens,
    max_tokens,
    module_summary,
    purpose,
    **prompt_kwargs,
):
    seed = random.randint(1,1111111111111111)

    generate_kwargs = dict(
        temperature=0.9,
        max_new_tokens=256,
        top_p=0.95,
        repetition_penalty=1.0,
        do_sample=True,
        seed=seed,
    )

    
    content = PREFIX.format(
        purpose=purpose,
    ) + prompt_template.format(**prompt_kwargs)
    if VERBOSE:
        print(LOG_PROMPT.format(content))
    
    
    #formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    #formatted_prompt = format_prompt(f'{content}', history)

    stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
    resp = ""
    for response in stream:
        resp += response.token.text
    '''
    resp = openai.ChatCompletion.create(
        model=MODEL,
        messages=[
            {"role": "system", "content": content},
        ],
        temperature=0.0,
        max_tokens=max_tokens,
        stop=stop_tokens if stop_tokens else None,
    )["choices"][0]["message"]["content"]
    '''
    if VERBOSE:
        print(LOG_RESPONSE.format(resp))
    return resp


def compress_history(purpose, task, history, directory):
    module_summary, _, _ = read_python_module_structure(directory)
    resp = run_gpt(
        COMPRESS_HISTORY_PROMPT,
        stop_tokens=["observation:", "task:", "action:", "thought:"],
        max_tokens=512,
        module_summary=module_summary,
        purpose=purpose,
        task=task,
        history=history,
    )
    history = "observation: {}\n".format(resp)
    return history
    
def call_search(purpose, task, history, directory, action_input):
    print("CALLING SEARCH")
    if "http" in action_input:
        if "<" in action_input:
            action_input = action_input.strip("<")
        if ">" in action_input:
            action_input = action_input.strip(">")
        response = i_s(action_input)
        #response = google(search_return)
        print(response)
        history += "observation: search result is: {}\n".format(response)
    else:
        history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=URL'\n"
    return "MAIN", None, history, task

def call_main(purpose, task, history, directory, action_input):
    module_summary, _, _ = read_python_module_structure(directory)
    resp = run_gpt(
        ACTION_PROMPT,
        stop_tokens=["observation:", "task:"],
        max_tokens=256,
        module_summary=module_summary,
        purpose=purpose,
        task=task,
        history=history,
    )
    lines = resp.strip().strip("\n").split("\n")
    for line in lines:
        if line == "":
            continue
        if line.startswith("thought: "):
            history += "{}\n".format(line)
        elif line.startswith("action: "):
            
            action_name, action_input = parse_action(line)
            print (f'ACTION_NAME :: {action_name}')
            print (f'ACTION_INPUT :: {action_input}')
            
            history += "{}\n".format(line)
            if action_name=="COMPLETE" or action_input=="COMPLETE":
                task = "END"
                return action_name, action_input, history, task
            else:
                return action_name, action_input, history, task
        else:
            history += "observation: my last command caused an ERROR, I need to check the commands syntax, or use a different command\n"
            
            #return action_name, action_input, history, task
            #assert False, "unknown action: {}".format(line)
    return "MAIN", None, history, task


def call_test(purpose, task, history, directory, action_input):
    result = subprocess.run(
        ["python", "-m", "pytest", "--collect-only", directory],
        capture_output=True,
        text=True,
    )
    if result.returncode != 0:
        history += "observation: there are no tests! Test should be written in a test folder under {}\n".format(
            directory
        )
        return "MAIN", None, history, task
    result = subprocess.run(
        ["python", "-m", "pytest", directory], capture_output=True, text=True
    )
    if result.returncode == 0:
        history += "observation: tests pass\n"
        return "MAIN", None, history, task
    module_summary, content, _ = read_python_module_structure(directory)
    resp = run_gpt(
        UNDERSTAND_TEST_RESULTS_PROMPT,
        stop_tokens=[],
        max_tokens=256,
        module_summary=module_summary,
        purpose=purpose,
        task=task,
        history=history,
        stdout=result.stdout[:5000],  # limit amount of text
        stderr=result.stderr[:5000],  # limit amount of text
    )
    history += "observation: tests failed: {}\n".format(resp)
    return "MAIN", None, history, task


def call_set_task(purpose, task, history, directory, action_input):
    module_summary, content, _ = read_python_module_structure(directory)
    task = run_gpt(
        TASK_PROMPT,
        stop_tokens=[],
        max_tokens=64,
        module_summary=module_summary,
        purpose=purpose,
        task=task,
        history=history,
    ).strip("\n")
    history += "observation: task has been updated to: {}\n".format(task)
    return "MAIN", None, history, task


def call_read(purpose, task, history, directory, action_input):
    if not os.path.exists(action_input):
        history += "observation: file does not exist\n"
        return "MAIN", None, history, task
    module_summary, content, _ = read_python_module_structure(directory)
    f_content = (
        content[action_input] if content[action_input] else "< document is empty >"
    )
    resp = run_gpt(
        READ_PROMPT,
        stop_tokens=[],
        max_tokens=256,
        module_summary=module_summary,
        purpose=purpose,
        task=task,
        history=history,
        file_path=action_input,
        file_contents=f_content,
    ).strip("\n")
    history += "observation: {}\n".format(resp)
    return "MAIN", None, history, task


def call_modify(purpose, task, history, directory, action_input):
    if not os.path.exists(action_input):
        history += "observation: file does not exist\n"
        return "MAIN", None, history, task
    (
        module_summary,
        content,
        _,
    ) = read_python_module_structure(directory)
    f_content = (
        content[action_input] if content[action_input] else "< document is empty >"
    )
    resp = run_gpt(
        MODIFY_PROMPT,
        stop_tokens=["action:", "thought:", "observation:"],
        max_tokens=2048,
        module_summary=module_summary,
        purpose=purpose,
        task=task,
        history=history,
        file_path=action_input,
        file_contents=f_content,
    )
    new_contents, description = parse_file_content(resp)
    if new_contents is None:
        history += "observation: failed to modify file\n"
        return "MAIN", None, history, task

    with open(action_input, "w") as f:
        f.write(new_contents)

    history += "observation: file successfully modified\n"
    history += "observation: {}\n".format(description)
    return "MAIN", None, history, task


def call_add(purpose, task, history, directory, action_input):
    d = os.path.dirname(action_input)
    if not d.startswith(directory):
        history += "observation: files must be under directory {}\n".format(directory)
    elif not action_input.endswith(".py"):
        history += "observation: can only write .py files\n"
    else:
        if d and not os.path.exists(d):
            os.makedirs(d)
        if not os.path.exists(action_input):
            module_summary, _, _ = read_python_module_structure(directory)
            resp = run_gpt(
                ADD_PROMPT,
                stop_tokens=["action:", "thought:", "observation:"],
                max_tokens=2048,
                module_summary=module_summary,
                purpose=purpose,
                task=task,
                history=history,
                file_path=action_input,
            )
            new_contents, description = parse_file_content(resp)
            if new_contents is None:
                history += "observation: failed to write file\n"
                return "MAIN", None, history, task

            with open(action_input, "w") as f:
                f.write(new_contents)

            history += "observation: file successfully written\n"
            history += "obsertation: {}\n".format(description)
        else:
            history += "observation: file already exists\n"
    return "MAIN", None, history, task
def end_fn(purpose, task, history, directory, action_input):
    task = "END"
    return "COMPLETE", None, history, task
NAME_TO_FUNC = {
    "MAIN": call_main,
    "UPDATE-TASK": call_set_task,
    "SEARCH": call_search,
    "COMPLETE": end_fn,

}


def run_action(purpose, task, history, directory, action_name, action_input):
    if action_name == "COMPLETE":
        task="END"
        return action_name, action_input, history, task

    # compress the history when it is long
    if len(history.split("\n")) > MAX_HISTORY:
        if VERBOSE:
            print("COMPRESSING HISTORY")
        history = compress_history(purpose, task, history, directory)

    assert action_name in NAME_TO_FUNC

    print("RUN: ", action_name, action_input)
    return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)


def run(purpose,hist):
    
    print(purpose)
    print(hist)
    task=None
    directory="./"
    history = ""
    action_name = "UPDATE-TASK" if task is None else "MAIN"
    action_input = None
    while True:
        print("")
        print("")
        print("---")
        print("purpose:", purpose)
        print("task:", task)
        print("---")
        print(history)
        print("---")

        action_name, action_input, history, task = run_action(
            purpose,
            task,
            history,
            directory,
            action_name,
            action_input,
        )
        if task == "END":
            return history



################################################

def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt
agents =[
    "WEB_DEV",
    "AI_SYSTEM_PROMPT",
    "PYTHON_CODE_DEV"
]
def generate(
        prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
    seed = random.randint(1,1111111111111111)

    agent=prompts.WEB_DEV
    if agent_name == "WEB_DEV":
        agent = prompts.WEB_DEV
    if agent_name == "AI_SYSTEM_PROMPT":
        agent = prompts.AI_SYSTEM_PROMPT
    if agent_name == "PYTHON_CODE_DEV":
        agent = prompts.PYTHON_CODE_DEV        
    system_prompt=agent
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=seed,
    )

    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output


additional_inputs=[
    gr.Dropdown(
        label="Agents",
        choices=[s for s in agents],
        value=agents[0],
        interactive=True,
        ),
    gr.Textbox(
        label="System Prompt",
        max_lines=1,
        interactive=True,
    ),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),

    gr.Slider(
        label="Max new tokens",
        value=1048*10,
        minimum=0,
        maximum=1048*10,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    ),


]

examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
          ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
          ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
          ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
          ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
          ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
         ]


gr.ChatInterface(
    fn=run,
    chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
    title="Mixtral 46.7B",
    examples=examples,
    concurrency_limit=20,
).launch(show_api=False)