Spaces:
Sleeping
Sleeping
import os | |
import subprocess | |
import random | |
from huggingface_hub import InferenceClient | |
import gradio as gr | |
from safe_search import safe_search | |
from i_search import google | |
from i_search import i_search as i_s | |
from agent import ( | |
ACTION_PROMPT, | |
ADD_PROMPT, | |
COMPRESS_HISTORY_PROMPT, | |
LOG_PROMPT, | |
LOG_RESPONSE, | |
MODIFY_PROMPT, | |
PREFIX, | |
SEARCH_QUERY, | |
READ_PROMPT, | |
TASK_PROMPT, | |
UNDERSTAND_TEST_RESULTS_PROMPT, | |
) | |
from utils import parse_action, parse_file_content, read_python_module_structure | |
from datetime import datetime | |
now = datetime.now() | |
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S") | |
client = InferenceClient( | |
"mistralai/Mixtral-8x7B-Instruct-v0.1" | |
) | |
############################################ | |
VERBOSE = False | |
MAX_HISTORY = 5 | |
#MODEL = "gpt-3.5-turbo" # "gpt-4" | |
TASK_PROMPT = """Task: {task}\nHistory:\n{history}""" | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def run_gpt( | |
prompt_template, | |
stop_tokens, | |
max_tokens, | |
purpose, | |
**prompt_kwargs, | |
): | |
seed = random.randint(1,1111111111111111) | |
print (seed) | |
generate_kwargs = dict( | |
temperature=1.0, | |
max_new_tokens=2096, | |
top_p=0.99, | |
repetition_penalty=1.0, | |
do_sample=True, | |
seed=seed, | |
) | |
content = PREFIX.format( | |
date_time_str=date_time_str, | |
purpose=purpose, | |
safe_search=safe_search, | |
) + prompt_template.format(**prompt_kwargs) | |
if VERBOSE: | |
print(LOG_PROMPT.format(content)) | |
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) | |
#formatted_prompt = format_prompt(f'{content}', history) | |
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
resp = "" | |
for response in stream: | |
resp += response.token.text | |
if VERBOSE: | |
print(LOG_RESPONSE.format(resp)) | |
return resp | |
def compress_history(purpose, task, history, directory): | |
resp = run_gpt( | |
COMPRESS_HISTORY_PROMPT, | |
stop_tokens=["observation:", "task:", "action:", "thought:"], | |
max_tokens=512, | |
purpose=purpose, | |
task=task, | |
history=history, | |
) | |
history = "observation: {}\n".format(resp) | |
return history | |
def call_search(purpose, task, history, directory, action_input): | |
print("CALLING SEARCH") | |
try: | |
if "http" in action_input: | |
if "<" in action_input: | |
action_input = action_input.strip("<") | |
if ">" in action_input: | |
action_input = action_input.strip(">") | |
response = i_s(action_input) | |
#response = google(search_return) | |
print(response) | |
history += "observation: search result is: {}\n".format(response) | |
else: | |
history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n" | |
except Exception as e: | |
history += "observation: {}'\n".format(e) | |
return "MAIN", None, history, task | |
def call_main(purpose, task, history, directory, action_input): | |
resp = run_gpt( | |
ACTION_PROMPT, | |
stop_tokens=["observation:", "task:", "action:","thought:"], | |
max_tokens=2096, | |
purpose=purpose, | |
task=task, | |
history=history, | |
) | |
lines = resp.strip().strip("\n").split("\n") | |
for line in lines: | |
if line == "": | |
continue | |
if line.startswith("thought: "): | |
history += "{}\n".format(line) | |
elif line.startswith("action: "): | |
action_name, action_input = parse_action(line) | |
print (f'ACTION_NAME :: {action_name}') | |
print (f'ACTION_INPUT :: {action_input}') | |
history += "{}\n".format(line) | |
if "COMPLETE" in action_name or "COMPLETE" in action_input: | |
task = "END" | |
return action_name, action_input, history, task | |
else: | |
return action_name, action_input, history, task | |
else: | |
history += "{}\n".format(line) | |
#history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line) | |
#return action_name, action_input, history, task | |
#assert False, "unknown action: {}".format(line) | |
return "MAIN", None, history, task | |
def call_set_task(purpose, task, history, directory, action_input): | |
task = run_gpt( | |
TASK_PROMPT, | |
stop_tokens=[], | |
max_tokens=64, | |
purpose=purpose, | |
task=task, | |
history=history, | |
).strip("\n") | |
history += "observation: task has been updated to: {}\n".format(task) | |
return "MAIN", None, history, task | |
def end_fn(purpose, task, history, directory, action_input): | |
task = "END" | |
return "COMPLETE", "COMPLETE", history, task | |
NAME_TO_FUNC = { | |
"MAIN": call_main, | |
"UPDATE-TASK": call_set_task, | |
"SEARCH": call_search, | |
"COMPLETE": end_fn, | |
} | |
def run_action(purpose, task, history, directory, action_name, action_input): | |
print(f'action_name::{action_name}') | |
try: | |
if "RESPONSE" in action_name or "COMPLETE" in action_name: | |
action_name="COMPLETE" | |
task="END" | |
return action_name, "COMPLETE", history, task | |
# compress the history when it is long | |
if len(history.split("\n")) > MAX_HISTORY: | |
if VERBOSE: | |
print("COMPRESSING HISTORY") | |
history = compress_history(purpose, task, history, directory) | |
if not action_name in NAME_TO_FUNC: | |
action_name="MAIN" | |
if action_name == "" or action_name == None: | |
action_name="MAIN" | |
assert action_name in NAME_TO_FUNC | |
print("RUN: ", action_name, action_input) | |
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input) | |
except Exception as e: | |
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n" | |
return "MAIN", None, history, task | |
def run(purpose,history): | |
#print(purpose) | |
#print(hist) | |
task=None | |
directory="./" | |
if history: | |
history=str(history).strip("[]") | |
if not history: | |
history = "" | |
action_name = "UPDATE-TASK" if task is None else "MAIN" | |
action_input = None | |
while True: | |
print("") | |
print("") | |
print("---") | |
print("purpose:", purpose) | |
print("task:", task) | |
print("---") | |
print(history) | |
print("---") | |
action_name, action_input, history, task = run_action( | |
purpose, | |
task, | |
history, | |
directory, | |
action_name, | |
action_input, | |
) | |
yield (history) | |
#yield ("",[(purpose,history)]) | |
if task == "END": | |
return (history) | |
#return ("", [(purpose,history)]) | |
################################################ | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
agents =[ | |
"WEB_DEV", | |
"AI_SYSTEM_PROMPT", | |
"PYTHON_CODE_DEV" | |
] | |
def generate( | |
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, | |
): | |
seed = random.randint(1,1111111111111111) | |
agent=prompts.WEB_DEV | |
if agent_name == "WEB_DEV": | |
agent = prompts.WEB_DEV | |
if agent_name == "AI_SYSTEM_PROMPT": | |
agent = prompts.AI_SYSTEM_PROMPT | |
if agent_name == "PYTHON_CODE_DEV": | |
agent = prompts.PYTHON_CODE_DEV | |
system_prompt=agent | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=seed, | |
) | |
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
return output | |
additional_inputs=[ | |
gr.Dropdown( | |
label="Agents", | |
choices=[s for s in agents], | |
value=agents[0], | |
interactive=True, | |
), | |
gr.Textbox( | |
label="System Prompt", | |
max_lines=1, | |
interactive=True, | |
), | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=1048*10, | |
minimum=0, | |
maximum=1048*10, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
), | |
] | |
examples=[["What are the biggest news stories today?", None, None, None, None, None, ], | |
["When is the next full moon?", None, None, None, None, None, ], | |
["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ], | |
["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,], | |
["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,], | |
["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,], | |
["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,], | |
["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,], | |
] | |
''' | |
gr.ChatInterface( | |
fn=run, | |
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), | |
title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test", | |
examples=examples, | |
concurrency_limit=20, | |
with gr.Blocks() as ifacea: | |
gr.HTML("""TEST""") | |
ifacea.launch() | |
).launch() | |
with gr.Blocks() as iface: | |
#chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), | |
chatbot=gr.Chatbot() | |
msg = gr.Textbox() | |
with gr.Row(): | |
submit_b = gr.Button() | |
clear = gr.ClearButton([msg, chatbot]) | |
submit_b.click(run, [msg,chatbot],[msg,chatbot]) | |
msg.submit(run, [msg, chatbot], [msg, chatbot]) | |
iface.launch() | |
''' | |
gr.ChatInterface( | |
fn=run, | |
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), | |
title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test", | |
examples=examples, | |
concurrency_limit=20, | |
).launch(show_api=False) |