import os import subprocess import random import torch from transformers import pipeline import gradio as gr from safe_search import safe_search from i_search import google, i_search as i_s from agent import ( ACTION_PROMPT, ADD_PROMPT, COMPRESS_HISTORY_PROMPT, LOG_PROMPT, LOG_RESPONSE, MODIFY_PROMPT, PREFIX, SEARCH_QUERY, READ_PROMPT, TASK_PROMPT, UNDERSTAND_TEST_RESULTS_PROMPT, ) from utils import parse_action, parse_file_content, read_python_module_structure from datetime import datetime def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def run_gpt( prompt_template, stop_tokens, max_tokens, purpose, **prompt_kwargs, ): seed = random.randint(1,1111111111111111) print(seed) generate_kwargs = dict( temperature=1.0, max_new_tokens=2096, top_p=0.99, repetition_penalty=1.0, do_sample=True, seed=seed, ) content = PREFIX.format( date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"), purpose=purpose, safe_search=safe_search, ) + prompt_template.format(**prompt_kwargs) if True: print(LOG_PROMPT.format(content)) model = pipeline('text-generation', model='microsoft/DialoGPT-small') response = model(content, max_length=max_tokens, temperature=1.0) resp = response[0]['generated_text'] if True: print(LOG_RESPONSE.format(resp)) return resp def compress_history(purpose, task, history, directory): resp = run_gpt( COMPRESS_HISTORY_PROMPT, stop_tokens=["observation:", "task:", "action:", "thought:"], max_tokens=512, purpose=purpose, task=task, history=history, ) return resp def call_search(purpose, task, history, directory, action_input): print("CALLING SEARCH") try: if "http" in action_input: if "<" in action_input: action_input = action_input.replace("<", "") if ">" in action_input: action_input = action_input.replace(">", "") response = i_s(action_input) #response = google(search_return) print(response) history += "observation: search result is: {}\n".format(response) else: history += "observation: I need to provide a valid URL to 'action: SEARCH'\n" except Exception as e: history += "observation: {}'\n".format(e) return "MAIN", None, history, task def call_main(purpose, task, history, directory, action_input): resp = run_gpt( ACTION_PROMPT, stop_tokens=["observation:", "task:", "action:","thought:"], max_tokens=2096, purpose=purpose, task=task, history=history, ) lines = resp.strip().strip("\n").split("\n") for line in lines: if line == "": continue if line.startswith("thought: "): history += "{}\n".format(line) elif line.startswith("action: "): action_name, action_input = line.split(": ") print (f'ACTION_NAME :: {action_name}') print (f'ACTION_INPUT :: {action_input}') history += "{}\n".format(line) if "COMPLETE" in action_name or "COMPLETE" in action_input: task = "COMPLETE" return action_name, action_input, history, task else: return action_name, action_input, history, task else: history += "{}\n".format(line) #history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line) #return action_name, action_input, history, task #assert False, "unknown action: {}".format(line) return "MAIN", None, history, task def call_set_task(purpose, task, history, directory, action_input): task = "COMPLETE" resp = run_gpt( TASK_PROMPT, stop_tokens=[], max_tokens=64, purpose=purpose, task=task, history=history, ).strip("\n") history += "observation: task has been updated to: {}\n".format(task) return "MAIN", None, history, task def end_fn(purpose, task, history, directory, action_input): task = "COMPLETE" return "COMPLETE", "COMPLETE", history, task NAME_TO_FUNC = { "MAIN": call_main, "UPDATE-TASK": call_set_task, "SEARCH": call_search, "COMPLETE": end_fn, } def run_action(purpose, task, history, directory, action_name, action_input): print(f'action_name::{action_name}') try: if "RESPONSE" in action_name or "COMPLETE" in action_name: action_name = "COMPLETE" task = "COMPLETE" return action_name, "COMPLETE", history, task # compress the history when it is long if len(history.split("\n")) > 5: if True: print("COMPRESSING HISTORY") history = history if not action_name in NAME_TO_FUNC: action_name = "MAIN" if action_name == "SEARCH": action_name = "SEARCH" assert action_name in NAME_TO_FUNC print("RUN: ", action_name, action_input) return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input) except Exception as e: history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n" return "MAIN", None, history, task def run(purpose,history): #print(purpose) #print(hist) task = "COMPLETE" directory = "directory" if history: history = history if not history: history = "" action_name = "MAIN" action_input = "input" while True: print("") print("") print("---") print("purpose:", purpose) print("task:", task) print("---") print(history) print("---") action_name, action_input, history, task = run_action( purpose, task, history, directory, action_name, action_input, ) yield (history) #yield ("",[(purpose,history)]) if task == "COMPLETE": return (history) #return ("", [(purpose,history)]) agents =[ "WEB_DEV", "AI_SYSTEM_PROMPT", "PYTHON_CODE_DEV" ] def generate( prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): seed = random.randint(1,1111111111111111) agent=prompts.WEB_DEV if agent_name == "WEB_DEV": agent = prompts.WEB_DEV if agent_name == "AI_SYSTEM_PROMPT": agent = prompts.AI_SYSTEM_PROMPT if agent_name == "PYTHON_CODE_DEV": agent = prompts.PYTHON_CODE_DEV system_prompt=agent temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=seed, ) formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) model = pipeline('text-generation', model='microsoft/DialoGPT-small') response = model(formatted_prompt, max_length=1024, temperature=1.0) output = response[0]['generated_text'] return output additional_inputs=[ gr.Dropdown( label="Agents", choices=[s for s in agents], value=agents[0], interactive=True, ), gr.Textbox( label="System Prompt", max_lines=1, interactive=True, ), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=1048*10, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ), ] examples = [ [ "Write an intro for a Bitcoin book, covering origins, core principles, and disruption potential. Use these links: [https://bitcoin.org/bitcoin.pdf, https://en.wikipedia.org/wiki/Satoshi_Nakamoto, https://www.investopedia.com/terms/b/bitcoin.asp]", "Introduction", ], [ "Write a chapter titled 'The Genesis of Bitcoin' using these links: [https://bitcoin.org/bitcoin.pdf, https://en.wikipedia.org/wiki/Satoshi_Nakamoto, https://www.investopedia.com/terms/b/bitcoin.asp]", "The Genesis of Bitcoin", ], [ "Write a chapter titled 'The Rise of the Decentralized' using these links: [https://en.wikipedia.org/wiki/Bitcoin_exchange, https://en.wikipedia.org/wiki/Bitcoin_mining, https://www.investopedia.com/terms/d/decentralized-finance-defi.asp]", "The Rise of the Decentralized", ], [ "Write a chapter titled 'The Bitcoin Revolution' using these links: [https://www.investopedia.com/terms/b/bitcoin-volatility.asp, https://www.investopedia.com/terms/s/scalability.asp, https://www.investopedia.com/terms/r/regulation.asp]", "The Bitcoin Revolution", ], [ "Write a chapter titled 'Beyond Bitcoin: The Blockchain Revolution' using these links: [https://www.investopedia.com/terms/b/blockchain.asp, https://www.ibm.com/topics/blockchain]", "Beyond Bitcoin: The Blockchain Revolution", ], [ "Write a chapter titled 'Reshaping Finance: Bitcoin's Impact on the Global System' using these links: [https://www.investopedia.com/terms/c/central-bank-digital-currency-cbdc.asp, https://www.investopedia.com/terms/i/international-trade.asp]", "Reshaping Finance: Bitcoin's Impact on the Global System", ], [ "Write a chapter titled 'Empowering Individuals: Bitcoin's Social Impact' using these links: [https://en.wikipedia.org/wiki/Financial_inclusion, https://www.investopedia.com/terms/w/wealth-distribution.asp]", "Empowering Individuals: Bitcoin's Social Impact", ], [ "Write a chapter titled 'A New World Order: Bitcoin's Potential for Change' using these links: [https://en.wikipedia.org/wiki/Sustainable_development, https://en.wikipedia.org/wiki/Global_trade, https://www.un.org/en/development/desa/policy/wssd/]", "A New World Order: Bitcoin's Potential for Change", ], [ "Write a chapter titled 'The Regulatory Landscape' using these links: [https://www.investopedia.com/terms/r/regulation.asp, https://www.coindesk.com/regulation]", "The Regulatory Landscape", ], [ "Write a chapter titled 'The Environmental Impact' using these links: [https://www.investopedia.com/terms/b/bitcoin-mining.asp, https://digiconomist.net/bitcoin-energy-consumption]", "The Environmental Impact", ], ] def launch_interface(): gr.ChatInterface( fn=run, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), title="Mixtral 46.7B\nMicro-Agent\nInternet Search
development test", examples=examples, concurrency_limit=20, ).launch(show_api=False) launch_interface()