Spaces:
Sleeping
Sleeping
File size: 11,636 Bytes
8c3fbf8 675c9d3 8c3fbf8 463e3cc 8c3fbf8 bd6c875 8c3fbf8 463e3cc 8c3fbf8 e6d482f 8c3fbf8 461c0f4 b3ef9b6 8c3fbf8 647ecd3 8c3fbf8 06d0c93 647ecd3 87bb9b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import json
import os
import requests
import torch
from gensim import summarize, corpora, models, dictionary
import re
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import HtmlFormatter
import sys
import time
from threading import Thread
import subprocess
import collections.abc as collections
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
# --- Constants ---
MODEL_URL = "https://huggingface.co/models"
TASKS_FILE = "tasks.json"
CODE_EXECUTION_ENV = {}
PIPELINE_RUNNING = False
# --- Model Initialization ---
generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B')
sentiment_model_name = "distilbert-base-uncased-finetuned-sst-2-english"
sentiment_tokenizer = AutoTokenizer.from_pretrained(sentiment_model_name)
sentiment_model = AutoModelForSequenceClassification.from_pretrained(sentiment_model_name)
# --- Helper Functions ---
def generate_code(prompt):
"""Generates code based on the given prompt."""
generated = generator(prompt, max_length=200, do_sample=True, temperature=0.9)
return generated[0]['generated_text']
def add_task(task_description):
"""Adds a new task to the task list."""
try:
with open(TASKS_FILE, "r") as outfile:
tasks = json.load(outfile)
except FileNotFoundError:
tasks = []
tasks.append({"task": task_description["task"], "description": task_description["description"], "status": "Pending"})
with open(TASKS_FILE, "w") as outfile:
json.dump(tasks, outfile)
def display_code(code):
"""Displays the code in a formatted manner."""
formatter = HtmlFormatter(style='default')
lexer = PythonLexer()
html = highlight(code, lexer, formatter)
st.markdown(html, unsafe_allow_html=True)
def summarize_text(text):
"""Summarizes the given text."""
return summarize(text)
def analyze_sentiment(text):
"""Analyzes the sentiment of the given text."""
inputs = sentiment_tokenizer(text, return_tensors='pt')
outputs = sentiment_model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
return probs.tolist()[0][1]
def run_tests(code):
"""Runs tests on the given code."""
# Placeholder for testing logic
return "Tests passed."
def load_model(model_name):
"""Loads a pre-trained model."""
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
return model, tokenizer
def save_model(model, tokenizer, file_name):
"""Saves the model and tokenizer."""
model.save_pretrained(file_name)
tokenizer.save_pretrained(file_name)
def load_dataset(file_name):
"""Loads a dataset from a file."""
data = []
with open(file_name, "r") as infile:
for line in infile:
data.append(line.strip())
return data
def save_dataset(data, file_name):
"""Saves a dataset to a file."""
with open(file_name, "w") as outfile:
for item in data:
outfile.write("%s\n" % item)
def download_file(url, file_name):
"""Downloads a file from a URL."""
response = requests.get(url)
if response.status_code == 200:
with open(file_name, "wb") as outfile:
outfile.write(response.content)
def get_model_list():
"""Gets a list of available models."""
response = requests.get(MODEL_URL)
models = []
for match in re.finditer("<a href='/models/(\w+/\w+)'", response.text):
models.append(match.group(1))
return models
def predict_text(model, tokenizer, text):
"""Predicts the text using the given model and tokenizer."""
inputs = tokenizer(text, return_tensors='pt')
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
return probs.tolist()[0]
def get_user_input():
"""Gets user input."""
input_type = st.selectbox("Select an input type", ["Text", "File", "Model"])
if input_type == "Text":
prompt = st.text_input("Enter text:")
return prompt
elif input_type == "File":
uploaded_file = st.file_uploader("Choose a file")
if uploaded_file:
return uploaded_file.read().decode("utf-8")
else:
return ""
elif input_type == "Model":
model_name = st.selectbox("Select a model", get_model_list())
model, tokenizer = load_model(model_name)
text = st.text_area("Enter text:")
return text
def get_tasks():
"""Loads tasks from tasks.json."""
try:
with open(TASKS_FILE, "r") as outfile:
tasks = json.load(outfile)
return tasks
except FileNotFoundError:
return []
def complete_task(task_id):
"""Completes a task."""
tasks = get_tasks()
if 0 <= task_id < len(tasks):
tasks[task_id]["status"] = "Completed"
with open(TASKS_FILE, "w") as outfile:
json.dump(tasks, outfile)
st.write(f"Task {task_id} completed.")
else:
st.write(f"Invalid task ID: {task_id}")
def delete_task(task_id):
"""Deletes a task."""
tasks = get_tasks()
if 0 <= task_id < len(tasks):
del tasks[task_id]
with open(TASKS_FILE, "w") as outfile:
json.dump(tasks, outfile)
st.write(f"Task {task_id} deleted.")
else:
st.write(f"Invalid task ID: {task_id}")
def run_pipeline():
"""Runs the pipeline."""
global PIPELINE_RUNNING
PIPELINE_RUNNING = True
while PIPELINE_RUNNING:
tasks = get_tasks()
for i, task in enumerate(tasks):
if task["status"] == "Pending":
st.write(f"Processing task {i}: {task['task']}")
try:
code = generate_code(task['description'])
st.write(f"Generated code:\n{code}")
# Execute code in a separate process
process = subprocess.Popen(["python", "-c", code], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, error = process.communicate()
st.write(f"Code output:\n{output.decode('utf-8')}")
st.write(f"Code error:\n{error.decode('utf-8')}")
# Run tests (replace with actual logic)
test_result = run_tests(code)
st.write(f"Test result: {test_result}")
# Update task status
tasks[i]["status"] = "Completed"
with open(TASKS_FILE, "w") as outfile:
json.dump(tasks, outfile)
except Exception as e:
st.write(f"Error processing task {i}: {e}")
tasks[i]["status"] = "Failed"
with open(TASKS_FILE, "w") as outfile:
json.dump(tasks, outfile)
time.sleep(1) # Adjust delay as needed
def stop_pipeline():
"""Stops the pipeline."""
global PIPELINE_RUNNING
PIPELINE_RUNNING = False
st.write("Pipeline stopped.")
def load_model(file_name):
"""Loads a saved model."""
try:
with open(file_name, "rb") as f:
model = pickle.load(f)
with open(file_name.replace(".sav", "_tokenizer.pkl"), "rb") as f:
tokenizer = pickle.load(f)
return model, tokenizer
except FileNotFoundError:
st.write(f"Model not found: {file_name}")
return None, None
def delete_model(file_name):
"""Deletes a saved model."""
try:
os.remove(file_name)
os.remove(file_name.replace(".sav", "_tokenizer.pkl"))
st.write(f"Model deleted: {file_name}")
except FileNotFoundError:
st.write(f"Model not found: {file_name}")
# --- Streamlit App ---
def main():
"""Main function."""
st.title("AI-Powered Code Interpreter")
# --- Code Generation and Analysis ---
st.subheader("Code Generation and Analysis")
text = get_user_input()
if text:
prompt = "Generate a python function that:\n\n" + text
code = generate_code(prompt)
summarized_text = ""
if len(text) > 100:
summarized_text = summarize_text(text)
sentiment = ""
if text:
sentiment = "Positive" if analyze_sentiment(text) > 0.5 else "Negative"
tests_passed = ""
if code:
tests_passed = run_tests(code)
st.subheader("Summary:")
st.write(summarized_text)
st.subheader("Sentiment:")
st.write(sentiment)
st.subheader("Code:")
display_code(code)
st.subheader("Tests:")
st.write(tests_passed)
if st.button("Save code"):
file_name = st.text_input("Enter file name:")
with open(file_name, "w") as outfile:
outfile.write(code)
# --- Dataset Management ---
st.subheader("Dataset Management")
if st.button("Load dataset"):
file_name = st.text_input("Enter file name:")
data = load_dataset(file_name)
st.write(data)
if st.button("Save dataset"):
data = st.text_area("Enter data:")
file_name = st.text_input("Enter file name:")
save_dataset(data, file_name)
# --- Model Management ---
st.subheader("Model Management")
if st.button("Download model"):
model_name = st.selectbox("Select a model", get_model_list())
url = f"{MODEL_URL}/models/{model_name}/download"
file_name = model_name.replace("/", "-") + ".tar.gz"
download_file(url, file_name)
if st.button("Load model"):
model_name = st.selectbox("Select a model", get_model_list())
model, tokenizer = load_model(model_name)
if st.button("Predict text"):
text = st.text_area("Enter text:")
probs = predict_text(model, tokenizer, text)
st.write(probs)
if st.button("Save model"):
file_name = st.text_input("Enter file name:")
save_model(model, tokenizer, file_name)
# --- Saved Model Management ---
st.subheader("Saved Model Management")
file_name = st.text_input("Enter file name:")
model, tokenizer = load_model(file_name)
if st.button("Delete model"):
delete_model(file_name)
# --- Task Management ---
st.subheader("Task Management")
if st.button("Add task"):
task = st.text_input("Enter task:")
description = st.text_area("Enter description:")
add_task({"task": task, "description": description})
if st.button("Show tasks"):
tasks = get_tasks()
st.write(tasks)
if st.button("Complete task"):
task_id = st.number_input("Enter task ID:")
complete_task(task_id)
if st.button("Delete task"):
task_id = st.number_input("Enter task ID:")
delete_task(task_id)
# --- Pipeline Management ---
st.subheader("Pipeline Management")
if st.button("Run pipeline") and not PIPELINE_RUNNING:
Thread(target=run_pipeline).start()
if st.button("Stop pipeline") and PIPELINE_RUNNING:
stop_pipeline()
# --- Console Management ---
st.subheader("Console Management")
if st.button("Clear console"):
st.write("")
if st.button("Quit"):
sys.exit()
if __name__ == "__main__":
main() |