File size: 19,955 Bytes
e046457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import os
import subprocess
import random
from huggingface_hub import InferenceClient
import gradio as gr
from safe_search import safe_search
from i_search import google
from i_search import i_search as i_s
from agent import (
    ACTION_PROMPT,
    ADD_PROMPT,
    COMPRESS_HISTORY_PROMPT,
    LOG_PROMPT,
    LOG_RESPONSE,
    MODIFY_PROMPT,
    PREFIX,
    SEARCH_QUERY,
    READ_PROMPT,
    TASK_PROMPT,
    UNDERSTAND_TEST_RESULTS_PROMPT,
)
from utils import parse_action, parse_file_content, read_python_module_structure
from datetime import datetime
import yaml
import logging

# Create a directory for logs if it doesn't exist
log_dir = "logs"
if not os.path.exists(log_dir):
    os.makedirs(log_dir)

# Configure logging
logging.basicConfig(
    filename=os.path.join(log_dir, "gradio_log.txt"),
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(message)s",
    filemode="a+",
)

# Use the logger
logger = logging.getLogger(__name__)

# Load custom prompts
try:
    with open('custom_prompts.yaml', 'r') as fp:
        custom_prompts = yaml.load(fp, Loader=yaml.FullLoader)
except FileNotFoundError:
    custom_prompts = {
        "WEB_DEV": "",
        "AI_SYSTEM_PROMPT": "",
        "PYTHON_CODE_DEV": "",
        "CODE_GENERATION": "",
        "CODE_INTERPRETATION": "",
        "CODE_TRANSLATION": "",
        "CODE_IMPLEMENTATION": ""
    }

for key, val in custom_prompts.items():
    globals()[key] = val

# Define advanced prompts
CODE_GENERATION = """
You are an expert AI code generation assistant. Your task is to generate high-quality, production-ready code based on the given requirements. You should be able to generate code in various programming languages, including Python, JavaScript, Java, C++, and more.

When generating code, follow these guidelines:

1. Understand the requirements thoroughly and ask clarifying questions if needed.
2. Write clean, modular, and maintainable code following best practices and industry standards.
3. Implement proper error handling, input validation, and edge case handling.
4. Optimize the code for performance and scalability when necessary.
5. Provide clear and concise comments to explain the code's functionality and logic.
6. If applicable, suggest and implement testing strategies (unit tests, integration tests, etc.).
7. Ensure the generated code is compatible with the target environment (e.g., web, mobile, desktop).
8. Provide examples or usage instructions if required.

Remember to always prioritize code quality, maintainability, and security. Your generated code should be ready for production use or further development.
"""

CODE_INTERPRETATION = """
You are an expert AI code interpretation assistant. Your task is to analyze and explain existing code in various programming languages, including Python, JavaScript, Java, C++, and more.

When interpreting code, follow these guidelines:

1. Read and understand the code thoroughly, including its functionality, logic, and structure.
2. Identify and explain the purpose of each code block, function, or module.
3. Highlight any potential issues, inefficiencies, or areas for improvement.
4. Suggest refactoring or optimization techniques if applicable.
5. Explain the code's input and output, as well as any dependencies or external libraries used.
6. Provide clear and concise explanations, using code comments or separate documentation.
7. If applicable, explain the testing strategies or methodologies used in the code.
8. Ensure your interpretations are accurate, unbiased, and tailored to the target audience's skill level.

Remember to prioritize clarity, accuracy, and completeness in your code interpretations. Your explanations should help developers understand the code's functionality and potential areas for improvement.
"""

CODE_TRANSLATION = """
You are an expert AI code translation assistant. Your task is to translate code from one programming language to another, ensuring the translated code maintains the original functionality and follows best practices in the target language.

When translating code, follow these guidelines:

1. Understand the original code's functionality, logic, and structure thoroughly.
2. Identify and translate all code elements, including variables, functions, classes, and data structures.
3. Ensure the translated code adheres to the coding conventions and best practices of the target language.
4. Optimize the translated code for performance and readability in the target language.
5. Preserve comments and documentation, translating them to the target language if necessary.
6. Handle any language-specific features or constructs appropriately during the translation process.
7. Implement error handling, input validation, and edge case handling in the translated code.
8. Provide clear and concise comments or documentation to explain any necessary changes or deviations from the original code.

Remember to prioritize accuracy, maintainability, and idiomatic usage in the target language. Your translated code should be functionally equivalent to the original code while adhering to the best practices of the target language.
"""

CODE_IMPLEMENTATION = """
You are an expert AI code implementation assistant. Your task is to take existing code or requirements and implement them in a production-ready environment, ensuring proper integration, deployment, and maintenance.

When implementing code, follow these guidelines:

1. Understand the code's functionality, dependencies, and requirements thoroughly.
2. Set up the appropriate development environment, including installing necessary tools, libraries, and frameworks.
3. Integrate the code with existing systems, APIs, or databases, if applicable.
4. Implement proper configuration management, version control, and continuous integration/deployment processes.
5. Ensure the code is properly tested, including unit tests, integration tests, and end-to-end tests.
6. Optimize the code for performance, scalability, and security in the production environment.
7. Implement monitoring, logging, and error handling mechanisms for the deployed code.
8. Document the implementation process, including any specific configurations, deployment steps, or maintenance procedures.

Remember to prioritize reliability, maintainability, and scalability in your code implementations. Your implementations should be production-ready, well-documented, and aligned with industry best practices for software development and deployment.
"""

# Update the custom_prompts dictionary with the new prompts
custom_prompts.update({
    "CODE_GENERATION": CODE_GENERATION,
    "CODE_INTERPRETATION": CODE_INTERPRETATION,
    "CODE_TRANSLATION": CODE_TRANSLATION,
    "CODE_IMPLEMENTATION": CODE_IMPLEMENTATION
})

now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")

client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

############################################

VERBOSE = True
MAX_HISTORY = 125

def format_prompt(message, history):
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def run_gpt(prompt_template, stop_tokens, max_tokens, purpose, **prompt_kwargs):
    seed = random.randint(1, 1111111111111111)
    print(seed)
    generate_kwargs = dict(
        temperature=1.0,
        max_new_tokens=2096,
        top_p=0.99,
        repetition_penalty=1.7,
        do_sample=True,
        seed=seed,
    )

    content = PREFIX.format(
        date_time_str=date_time_str,
        purpose=purpose,
        safe_search=safe_search,
    ) + prompt_template.format(**prompt_kwargs)
    
    if VERBOSE:
        print(LOG_PROMPT.format(content))

    stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
    resp = ""
    for response in stream:
        resp += response.token.text

    if VERBOSE:
        print(LOG_RESPONSE.format(resp))
    
    return resp

def compress_history(purpose, task, history, directory):
    resp = run_gpt(
        COMPRESS_HISTORY_PROMPT,
        stop_tokens=["observation:", "task:", "action:", "thought:"],
        max_tokens=5096,
        purpose=purpose,
        task=task,
        history=history,
    )
    history = "observation: {}\n".format(resp)
    return history

def call_search(purpose, task, history, directory, action_input):
    print("CALLING SEARCH")
    try:
        if "http" in action_input:
            if "<" in action_input:
                action_input = action_input.strip("<")
            if ">" in action_input:
                action_input = action_input.strip(">")

            response = i_s(action_input)
            print(response)
            history += "observation: search result is: {}\n".format(response)
        else:
            history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
    except Exception as e:
        history += "observation: {}'\n".format(e)
    
    return "MAIN", None, history, task

def call_main(purpose, task, history, directory, action_input):
    resp = run_gpt(
        ACTION_PROMPT,
        stop_tokens=["observation:", "task:", "action:", "thought:"],
        max_tokens=5096,
        purpose=purpose,
        task=task,
        history=history,
    )
    
    lines = resp.strip().strip("\n").split("\n")
    for line in lines:
        if line == "":
            continue
        if line.startswith("thought: "):
            history += "{}\n".format(line)
        elif line.startswith("action: "):
            action_name, action_input = parse_action(line)
            print(f'ACTION_NAME :: {action_name}')
            print(f'ACTION_INPUT :: {action_input}')
            history += "{}\n".format(line)
            if "COMPLETE" in action_name or "COMPLETE" in action_input:
                task = "END"
                return action_name, action_input, history, task
            else:
                return action_name, action_input, history, task
        else:
            history += "{}\n".format(line)
    
    return "MAIN", None, history, task

def call_set_task(purpose, task, history, directory, action_input):
    task = run_gpt(
        TASK_PROMPT,
        stop_tokens=[],
        max_tokens=2048,
        purpose=purpose,
        task=task,
        history=history,
    ).strip("\n")
    
    history += "observation: task has been updated to: {}\n".format(task)
    return "MAIN", None, history, task

def end_fn(purpose, task, history, directory, action_input):
    task = "END"
    return "COMPLETE", "COMPLETE", history, task

NAME_TO_FUNC = {
    "MAIN": call_main,
    "UPDATE-TASK": call_set_task,
    "SEARCH": call_search,
    "COMPLETE": end_fn,
}

def run_action(purpose, task, history, directory, action_name, action_input):
    print(f'action_name::{action_name}')
    try:
        if "RESPONSE" in action_name or "COMPLETE" in action_name:
            action_name = "COMPLETE"
            task = "END"
            return action_name, "COMPLETE", history, task

        # compress the history when it is long
        if len(history.split("\n")) > MAX_HISTORY:
            if VERBOSE:
                print("COMPRESSING HISTORY")
            history = compress_history(purpose, task, history, directory)
        
        if not action_name in NAME_TO_FUNC:
            action_name = "MAIN"
        if action_name == "" or action_name is None:
            action_name = "MAIN"
        
        assert action_name in NAME_TO_FUNC

        print("RUN: ", action_name, action_input)
        return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
    except Exception as e:
        history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
        return "MAIN", None, history, task

def run(purpose, history):
    task = None
    directory = "./"
    if history:
        history = str(history).strip("[]")
    if not history:
        history = ""

    action_name = "UPDATE-TASK" if task is None else "MAIN"
    action_input = None
    while True:
        print("")
        print("")
        print("---")
        print("purpose:", purpose)
        print("task:", task)
        print("---")
        print(history)
        print("---")

        action_name, action_input, history, task = run_action(
            purpose,
            task,
            history,
            directory,
            action_name,
            action_input,
        )
        
        yield (history)
        
        if task == "END":
            return (history)

################################################

agents = [
    "WEB_DEV",
    "AI_SYSTEM_PROMPT",
    "PYTHON_CODE_DEV"
]

def generate(
        prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.7,
):
    seed = random.randint(1, 1111111111111111)
    agent = prompts["WEB_DEV"]

    if agent_name == "WEB_DEV":
        agent = prompts["WEB_DEV"]
    elif agent_name == "AI_SYSTEM_PROMPT":
        agent = prompts["AI_SYSTEM_PROMPT"]
    elif agent_name == "PYTHON_CODE_DEV":
        agent = prompts["PYTHON_CODE_DEV"]
    
    system_prompt = agent
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=seed,
    )

    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    output = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, return_full_text=True)
    
    return output

# Define input and output components
with gr.Blocks() as iface:
    # Input components
    input_text = gr.Textbox(label="Input Text")
    # Other input components...

    # Output components
    output_text = gr.Textbox(label="Output Text")
    # Other output components...

    # Specify inputs and events
    inputs = [input_text, ...]  # List of input components
    events = [output_text, ...]  # List of output components

@gr.Interface.load(inputs, events)
def log_messages(inputs, outputs):
    logger(f'Input: {inputs}, Output: {outputs}')

@gr.Interface.load(inputs, events)
def log_messages(inputs, outputs):
    logger(f'Input: {inputs}, Output: {outputs}')

def update_sys_prompt(agent):
    global SYSTEM_PROMPT
    SYSTEM_PROMPT = globals()[agent]

def get_helpful_tip(agent):
    if agent == 'WEB_DEV':
        return "Provide information related to Web Development tasks."
    elif agent == 'AI_SYSTEM_PROMPT':
        return "Update the system instructions for the assistant here."
    elif agent == 'PYTHON_CODE_DEV':
        return "Describe what you want me to help you with regarding Python coding tasks."
    elif agent == 'CODE_GENERATION':
        return "Provide requirements for the code you want me to generate."
    elif agent == 'CODE_INTERPRETATION':
        return "Share the code you want me to analyze and explain."
    elif agent == 'CODE_TRANSLATION':
        return "Specify the source and target programming languages, and provide the code you want me to translate."
    elif agent == 'CODE_IMPLEMENTATION':
        return "Provide the code or requirements you want me to implement in a production-ready environment."

def chat_interface(prompt, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty):
    generated_text = generate(prompt, history, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
    chatbot_response = [(prompt, generated_text)]
    return chatbot_response, ""  # Return the chatbot response and an empty string for the message textbox

additional_inputs = [
    gr.Dropdown(
        label="Agents",
        choices=[s for s in agents],
        value=agents[0],
        interactive=True,
    ),
    gr.Textbox(
        label="System Prompt",
        max_lines=1,
        interactive=True,
    ),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=1048 * 10,
        minimum=0,
        maximum=1048 * 10,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    ),
]

examples = [
    ["Based on previous interactions, generate an interactive preview of the user's requested application.", None, None, None, None, None],
    ["Utilize the relevant code snippets and components from previous interactions.", None, None, None, None, None],
    ["Assemble a working demo that showcases the core functionality of the application.", None, None, None, None, None],
    ["Present the demo in an interactive environment within the Gradio interface.", None, None, None, None, None],
    ["Allow the user to explore and interact with the demo to test its features.", None, None, None, None, None],
    ["Gather feedback from the user about the demo and potential improvements.", None, None, None, None, None],
    ["If the user approves of the app's running state, provide a bash script that will automate all aspects of a local run and a docker image for ease-of-launch in addition to the huggingface-ready app.py with all functions and GUI, and the requirements.txt file comprised of all required libraries and packages the application is dependent on, avoiding OpenAI API at all points since we only use Hugging Face transformers, models, agents, libraries, and API.", None, None, None, None, None],
]

def create_interface():
    with gr.Blocks() as iface:
        gr.ChatInterface(
            fn=generate,
            title="Fragmixt\nAgents With Agents,\nSurf With a Purpose",
            examples=examples,
            additional_inputs=additional_inputs,
        )
    return iface

iface = gr.Blocks()

with iface:
    gr.Markdown("# Fragmixt\nAgents With Agents,\nSurf With a Purpose")
    
    chatbot = gr.Chatbot()
    msg = gr.Textbox()
    clear = gr.Button("Clear")

    agent_dropdown = gr.Dropdown(label="Agents", choices=agents, value=agents[0])
    sys_prompt = gr.Textbox(label="System Prompt", max_lines=1)
    temperature = gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05)
    max_new_tokens = gr.Slider(label="Max new tokens", value=1048 * 10, minimum=0, maximum=1048 * 10, step=64)
    top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05)
    repetition_penalty = gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05)

    msg.submit(chat_interface, 
               [msg, chatbot, agent_dropdown, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty], 
               [chatbot, msg])
    clear.click(lambda: None, None, chatbot, queue=False)

    gr.Examples(examples, [msg, agent_dropdown, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty])

iface.load(fn=get_helpful_tip, inputs=agent_dropdown, outputs=ui.info)
iface.load(fn=update_sys_prompt, inputs=agent_dropdown, outputs=sys_prompt)
iface.load(fn=log_messages, input_type='state', event_type='save_model')

iface.launch()