Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,9 +13,9 @@ import json
|
|
13 |
now = datetime.now()
|
14 |
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
|
20 |
# --- Set up logging ---
|
21 |
logging.basicConfig(
|
@@ -24,7 +24,7 @@ logging.basicConfig(
|
|
24 |
format="%(asctime)s - %(levelname)s - %(message)s",
|
25 |
)
|
26 |
|
27 |
-
agents =[
|
28 |
"WEB_DEV",
|
29 |
"AI_SYSTEM_PROMPT",
|
30 |
"PYTHON_CODE_DEV"
|
@@ -33,7 +33,7 @@ agents =[
|
|
33 |
|
34 |
VERBOSE = True
|
35 |
MAX_HISTORY = 5
|
36 |
-
#MODEL = "gpt-3.5-turbo" # "gpt-4"
|
37 |
|
38 |
PREFIX = """
|
39 |
{date_time_str}
|
@@ -111,7 +111,200 @@ def run_gpt(
|
|
111 |
logging.info(LOG_RESPONSE.format(resp)) # Log the response
|
112 |
return resp
|
113 |
|
114 |
-
def generate(prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.7, max_new_tokens=2048, top_p=0.8, repetition_penalty=1.5):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
seed = random.randint(1,1111111111111111)
|
116 |
|
117 |
# Correct the line:
|
@@ -127,21 +320,31 @@ def generate(prompt, history, agent_name=agents[0], sys_prompt="", temperature=0
|
|
127 |
temperature = 1e-2
|
128 |
top_p = float(top_p)
|
129 |
|
130 |
-
generate_kwargs = dict(
|
131 |
-
temperature=temperature,
|
132 |
-
max_new_tokens=max_new_tokens,
|
133 |
-
top_p=top_p,
|
134 |
-
repetition_penalty=repetition_penalty,
|
135 |
-
do_sample=True,
|
136 |
-
seed=seed,
|
137 |
-
)
|
138 |
|
139 |
-
formatted_prompt = format_prompt(prompt, history, max_history_turns=5) # Truncated history
|
140 |
-
logging.info(f"Formatted Prompt: {formatted_prompt}")
|
141 |
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
-
|
|
|
|
|
145 |
output = ""
|
146 |
|
147 |
for response in stream:
|
@@ -275,7 +478,8 @@ def project_explorer(path):
|
|
275 |
tree = get_file_tree(path)
|
276 |
display_file_tree(tree)
|
277 |
|
278 |
-
def chat_app_logic(message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model):
|
|
|
279 |
|
280 |
try:
|
281 |
# Attempt to join the generator output
|
@@ -311,41 +515,7 @@ def chat_app_logic(message, history, purpose, agent_name, sys_prompt, temperatur
|
|
311 |
max_new_tokens=max_new_tokens,
|
312 |
top_p=top_p,
|
313 |
repetition_penalty=repetition_penalty,
|
314 |
-
|
315 |
-
try:
|
316 |
-
# Attempt to join the generator output
|
317 |
-
response = ''.join(generate(
|
318 |
-
model=model, # Now you can use 'model' here
|
319 |
-
messages=messages,
|
320 |
-
stream=True,
|
321 |
-
temperature=0.7,
|
322 |
-
max_tokens=1500
|
323 |
-
))
|
324 |
-
except TypeError:
|
325 |
-
# If joining fails, collect the output in a list
|
326 |
-
response_parts = []
|
327 |
-
for part in generate(
|
328 |
-
model=model, # Now you can use 'model' here
|
329 |
-
messages=messages,
|
330 |
-
stream=True,
|
331 |
-
temperature=0.7,
|
332 |
-
max_tokens=1500
|
333 |
-
):
|
334 |
-
if isinstance(part, str):
|
335 |
-
response_parts.append(part)
|
336 |
-
elif isinstance(part, dict) and 'content' in part:
|
337 |
-
response_parts.append(part['content']),
|
338 |
-
|
339 |
-
response = ''.join(response_parts,
|
340 |
-
# Run the model and get the response (convert generator to string)
|
341 |
-
prompt=message,
|
342 |
-
history=history,
|
343 |
-
agent_name=agent_name,
|
344 |
-
sys_prompt=sys_prompt,
|
345 |
-
temperature=temperature,
|
346 |
-
max_new_tokens=max_new_tokens,
|
347 |
-
top_p=top_p,
|
348 |
-
repetition_penalty=repetition_penalty,
|
349 |
)
|
350 |
history.append((message, response))
|
351 |
return history
|
@@ -353,7 +523,6 @@ def chat_app_logic(message, history, purpose, agent_name, sys_prompt, temperatur
|
|
353 |
return history
|
354 |
|
355 |
def main():
|
356 |
-
|
357 |
with gr.Blocks() as demo:
|
358 |
gr.Markdown("## FragMixt")
|
359 |
gr.Markdown("### Agents w/ Agents")
|
@@ -371,6 +540,7 @@ def main():
|
|
371 |
max_new_tokens = gr.Slider(label="Max new tokens", value=1048*10, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens")
|
372 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
|
373 |
repetition_penalty = gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
|
|
|
374 |
|
375 |
# Button to submit the message
|
376 |
submit_button = gr.Button(value="Send")
|
@@ -381,16 +551,15 @@ def main():
|
|
381 |
explore_button = gr.Button(value="Explore")
|
382 |
project_output = gr.Textbox(label="File Tree", lines=20)
|
383 |
|
384 |
-
|
385 |
with gr.Tab("Chat App"):
|
386 |
history = gr.State([])
|
387 |
for example in examples:
|
388 |
-
gr.Button(value=example[0]).click(lambda: chat_app_logic(example[0], history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model), outputs=chatbot)
|
389 |
|
390 |
# Connect components to the chat app logic
|
391 |
-
submit_button.click(chat_app_logic, inputs=[message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty,
|
392 |
-
message.submit(chat_app_logic, inputs=[message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty,
|
393 |
-
|
394 |
|
395 |
# Connect components to the project explorer
|
396 |
explore_button.click(project_explorer, inputs=project_path, outputs=project_output)
|
|
|
13 |
now = datetime.now()
|
14 |
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
|
15 |
|
16 |
+
client = InferenceClient(
|
17 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1"
|
18 |
+
)
|
19 |
|
20 |
# --- Set up logging ---
|
21 |
logging.basicConfig(
|
|
|
24 |
format="%(asctime)s - %(levelname)s - %(message)s",
|
25 |
)
|
26 |
|
27 |
+
agents = [
|
28 |
"WEB_DEV",
|
29 |
"AI_SYSTEM_PROMPT",
|
30 |
"PYTHON_CODE_DEV"
|
|
|
33 |
|
34 |
VERBOSE = True
|
35 |
MAX_HISTORY = 5
|
36 |
+
# MODEL = "gpt-3.5-turbo" # "gpt-4"
|
37 |
|
38 |
PREFIX = """
|
39 |
{date_time_str}
|
|
|
111 |
logging.info(LOG_RESPONSE.format(resp)) # Log the response
|
112 |
return resp
|
113 |
|
114 |
+
def generate(prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.7, max_new_tokens=2048, top_p=0.8, repetition_penalty=1.5, model="mistralai/Mixtral-8x7B-Instruct-v0.1"):
|
115 |
+
content = PREFIX.format(
|
116 |
+
date_time_str=date_time_str,
|
117 |
+
purpose=purpose,
|
118 |
+
safe_search=safe_search,
|
119 |
+
) + prompt_template.format(**prompt_kwargs)
|
120 |
+
if VERBOSE:
|
121 |
+
logging.info(LOG_PROMPT.format(content)) # Log the prompt
|
122 |
+
|
123 |
+
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
124 |
+
resp = ""
|
125 |
+
for response in stream:
|
126 |
+
resp += response.token.text
|
127 |
+
|
128 |
+
if VERBOSE:
|
129 |
+
logging.info(LOG_RESPONSE.format(resp)) # Log the response
|
130 |
+
return resp
|
131 |
+
|
132 |
+
|
133 |
+
def compress_history(purpose, task, history, directory):
|
134 |
+
resp = run_gpt(
|
135 |
+
COMPRESS_HISTORY_PROMPT,
|
136 |
+
stop_tokens=["observation:", "task:", "action:", "thought:"],
|
137 |
+
max_tokens=512,
|
138 |
+
purpose=purpose,
|
139 |
+
task=task,
|
140 |
+
history=history,
|
141 |
+
)
|
142 |
+
history = "observation: {}\n".format(resp)
|
143 |
+
return history
|
144 |
+
|
145 |
+
def call_search(purpose, task, history, directory, action_input):
|
146 |
+
logging.info(f"CALLING SEARCH: {action_input}")
|
147 |
+
try:
|
148 |
+
|
149 |
+
if "http" in action_input:
|
150 |
+
if "<" in action_input:
|
151 |
+
action_input = action_input.strip("<")
|
152 |
+
if ">" in action_input:
|
153 |
+
action_input = action_input.strip(">")
|
154 |
+
|
155 |
+
response = i_s(action_input)
|
156 |
+
#response = google(search_return)
|
157 |
+
logging.info(f"Search Result: {response}")
|
158 |
+
history += "observation: search result is: {}\n".format(response)
|
159 |
+
else:
|
160 |
+
history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
|
161 |
+
except Exception as e:
|
162 |
+
history += "observation: {}'\n".format(e)
|
163 |
+
return "MAIN", None, history, task
|
164 |
+
|
165 |
+
def call_main(purpose, task, history, directory, action_input):
|
166 |
+
logging.info(f"CALLING MAIN: {action_input}")
|
167 |
+
resp = run_gpt(
|
168 |
+
ACTION_PROMPT,
|
169 |
+
stop_tokens=["observation:", "task:", "action:","thought:"],
|
170 |
+
max_tokens=32000,
|
171 |
+
purpose=purpose,
|
172 |
+
task=task,
|
173 |
+
history=history,
|
174 |
+
)
|
175 |
+
lines = resp.strip().strip("\n").split("\n")
|
176 |
+
for line in lines:
|
177 |
+
if line == "":
|
178 |
+
continue
|
179 |
+
if line.startswith("thought: "):
|
180 |
+
history += "{}\n".format(line)
|
181 |
+
logging.info(f"Thought: {line}")
|
182 |
+
elif line.startswith("action: "):
|
183 |
+
|
184 |
+
action_name, action_input = parse_action(line)
|
185 |
+
logging.info(f"Action: {action_name} - {action_input}")
|
186 |
+
history += "{}\n".format(line)
|
187 |
+
if "COMPLETE" in action_name or "COMPLETE" in action_input:
|
188 |
+
task = "END"
|
189 |
+
return action_name, action_input, history, task
|
190 |
+
else:
|
191 |
+
return action_name, action_input, history, task
|
192 |
+
else:
|
193 |
+
history += "{}\n".format(line)
|
194 |
+
logging.info(f"Other Output: {line}")
|
195 |
+
#history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line)
|
196 |
+
|
197 |
+
#return action_name, action_input, history, task
|
198 |
+
#assert False, "unknown action: {}".format(line)
|
199 |
+
return "MAIN", None, history, task
|
200 |
+
|
201 |
+
|
202 |
+
def call_set_task(purpose, task, history, directory, action_input):
|
203 |
+
logging.info(f"CALLING SET_TASK: {action_input}")
|
204 |
+
task = run_gpt(
|
205 |
+
TASK_PROMPT,
|
206 |
+
stop_tokens=[],
|
207 |
+
max_tokens=64,
|
208 |
+
purpose=purpose,
|
209 |
+
task=task,
|
210 |
+
history=history,
|
211 |
+
).strip("\n")
|
212 |
+
history += "observation: task has been updated to: {}\n".format(task)
|
213 |
+
return "MAIN", None, history, task
|
214 |
+
|
215 |
+
def end_fn(purpose, task, history, directory, action_input):
|
216 |
+
logging.info(f"CALLING END_FN: {action_input}")
|
217 |
+
task = "END"
|
218 |
+
return "COMPLETE", "COMPLETE", history, task
|
219 |
+
|
220 |
+
NAME_TO_FUNC = {
|
221 |
+
"MAIN": call_main,
|
222 |
+
"UPDATE-TASK": call_set_task,
|
223 |
+
"SEARCH": call_search,
|
224 |
+
"COMPLETE": end_fn,
|
225 |
+
|
226 |
+
}
|
227 |
+
|
228 |
+
def run_action(purpose, task, history, directory, action_name, action_input):
|
229 |
+
logging.info(f"RUNNING ACTION: {action_name} - {action_input}")
|
230 |
+
try:
|
231 |
+
if "RESPONSE" in action_name or "COMPLETE" in action_name:
|
232 |
+
action_name="COMPLETE"
|
233 |
+
task="END"
|
234 |
+
return action_name, "COMPLETE", history, task
|
235 |
+
|
236 |
+
# compress the history when it is long
|
237 |
+
if len(history.split("\n")) > MAX_HISTORY:
|
238 |
+
logging.info("COMPRESSING HISTORY")
|
239 |
+
history = compress_history(purpose, task, history, directory)
|
240 |
+
if not action_name in NAME_TO_FUNC:
|
241 |
+
action_name="MAIN"
|
242 |
+
if action_name == "" or action_name == None:
|
243 |
+
action_name="MAIN"
|
244 |
+
assert action_name in NAME_TO_FUNC
|
245 |
+
|
246 |
+
logging.info(f"RUN: {action_name} - {action_input}")
|
247 |
+
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
|
248 |
+
except Exception as e:
|
249 |
+
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
|
250 |
+
logging.error(f"Error in run_action: {e}")
|
251 |
+
return "MAIN", None, history, task
|
252 |
+
|
253 |
+
def run(purpose,history):
|
254 |
+
|
255 |
+
#print(purpose)
|
256 |
+
#print(hist)
|
257 |
+
task=None
|
258 |
+
directory="./"
|
259 |
+
if history:
|
260 |
+
history=str(history).strip("[]")
|
261 |
+
if not history:
|
262 |
+
history = ""
|
263 |
+
|
264 |
+
action_name = "UPDATE-TASK" if task is None else "MAIN"
|
265 |
+
action_input = None
|
266 |
+
while True:
|
267 |
+
logging.info(f"---")
|
268 |
+
logging.info(f"Purpose: {purpose}")
|
269 |
+
logging.info(f"Task: {task}")
|
270 |
+
logging.info(f"---")
|
271 |
+
logging.info(f"History: {history}")
|
272 |
+
logging.info(f"---")
|
273 |
+
|
274 |
+
action_name, action_input, history, task = run_action(
|
275 |
+
purpose,
|
276 |
+
task,
|
277 |
+
history,
|
278 |
+
directory,
|
279 |
+
action_name,
|
280 |
+
action_input,
|
281 |
+
)
|
282 |
+
yield (history)
|
283 |
+
#yield ("",[(purpose,history)])
|
284 |
+
if task == "END":
|
285 |
+
return (history)
|
286 |
+
#return ("", [(purpose,history)])
|
287 |
+
|
288 |
+
|
289 |
+
|
290 |
+
################################################
|
291 |
+
|
292 |
+
def format_prompt(message, history, max_history_turns=5):
|
293 |
+
prompt = "<s>"
|
294 |
+
# Keep only the last 'max_history_turns' turns
|
295 |
+
for user_prompt, bot_response in history[-max_history_turns:]:
|
296 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
297 |
+
prompt += f" {bot_response}</s> "
|
298 |
+
prompt += f"[INST] {message} [/INST]"
|
299 |
+
return prompt
|
300 |
+
agents =[
|
301 |
+
"WEB_DEV",
|
302 |
+
"AI_SYSTEM_PROMPT",
|
303 |
+
"PYTHON_CODE_DEV"
|
304 |
+
]
|
305 |
+
def generate(
|
306 |
+
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0, model="mistralai/Mixtral-8x7B-Instruct-v0.1"
|
307 |
+
):
|
308 |
seed = random.randint(1,1111111111111111)
|
309 |
|
310 |
# Correct the line:
|
|
|
320 |
temperature = 1e-2
|
321 |
top_p = float(top_p)
|
322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
|
|
|
|
|
324 |
|
325 |
+
def generate_text_chunked(input_text, model, generation_parameters, max_tokens_to_generate):
|
326 |
+
"""Generates text in chunks to avoid token limit errors."""
|
327 |
+
sentences = nltk.sent_tokenize(input_text)
|
328 |
+
generated_text = []
|
329 |
+
generator = pipeline('text-generation', model=model)
|
330 |
+
|
331 |
+
for sentence in sentences:
|
332 |
+
# Tokenize the sentence and check if it's within the limit
|
333 |
+
tokens = generator.tokenizer(sentence).input_ids
|
334 |
+
if len(tokens) + max_tokens_to_generate <= 32768:
|
335 |
+
# Generate text for this chunk
|
336 |
+
response = generator(sentence, max_length=max_tokens_to_generate, **generation_parameters)
|
337 |
+
generated_text.append(response[0]['generated_text'])
|
338 |
+
else:
|
339 |
+
# Handle cases where the sentence is too long
|
340 |
+
# You could split the sentence further or skip it
|
341 |
+
print(f"Sentence too long: {sentence}")
|
342 |
+
|
343 |
+
return ''.join(generated_text)
|
344 |
|
345 |
+
formatted_prompt = format_prompt(prompt, history, max_history_turns=5) # Truncated history
|
346 |
+
logging.info(f"Formatted Prompt: {formatted_prompt}")
|
347 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
348 |
output = ""
|
349 |
|
350 |
for response in stream:
|
|
|
478 |
tree = get_file_tree(path)
|
479 |
display_file_tree(tree)
|
480 |
|
481 |
+
def chat_app_logic(message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model):
|
482 |
+
# Your existing code here
|
483 |
|
484 |
try:
|
485 |
# Attempt to join the generator output
|
|
|
515 |
max_new_tokens=max_new_tokens,
|
516 |
top_p=top_p,
|
517 |
repetition_penalty=repetition_penalty,
|
518 |
+
model=model # Pass the model argument here
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
519 |
)
|
520 |
history.append((message, response))
|
521 |
return history
|
|
|
523 |
return history
|
524 |
|
525 |
def main():
|
|
|
526 |
with gr.Blocks() as demo:
|
527 |
gr.Markdown("## FragMixt")
|
528 |
gr.Markdown("### Agents w/ Agents")
|
|
|
540 |
max_new_tokens = gr.Slider(label="Max new tokens", value=1048*10, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens")
|
541 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens")
|
542 |
repetition_penalty = gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
|
543 |
+
model_input = gr.Textbox(label="Model", value="mistralai/Mixtral-8x7B-Instruct-v0.1", visible=False)
|
544 |
|
545 |
# Button to submit the message
|
546 |
submit_button = gr.Button(value="Send")
|
|
|
551 |
explore_button = gr.Button(value="Explore")
|
552 |
project_output = gr.Textbox(label="File Tree", lines=20)
|
553 |
|
554 |
+
# Chat App Logic Tab
|
555 |
with gr.Tab("Chat App"):
|
556 |
history = gr.State([])
|
557 |
for example in examples:
|
558 |
+
gr.Button(value=example[0]).click(lambda: chat_app_logic(example[0], history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model=model_input), outputs=chatbot)
|
559 |
|
560 |
# Connect components to the chat app logic
|
561 |
+
submit_button.click(chat_app_logic, inputs=[message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model_input], outputs=chatbot)
|
562 |
+
message.submit(chat_app_logic, inputs=[message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model_input], outputs=chatbot)
|
|
|
563 |
|
564 |
# Connect components to the project explorer
|
565 |
explore_button.click(project_explorer, inputs=project_path, outputs=project_output)
|