acecalisto3 commited on
Commit
c1cced9
·
verified ·
1 Parent(s): ef2a016

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -8
app.py CHANGED
@@ -6,7 +6,7 @@ import os
6
 
7
  # Initialize Hugging Face pipelines
8
  text_generator = pipeline("text-generation", model="gpt2")
9
- code_generator = pipeline("text2text-generation", model="microsoft/CodeGPT-small-py")
10
 
11
  # Streamlit App
12
  st.title("AI Dev Tool Kit")
@@ -22,7 +22,7 @@ if app_mode == "Explorer":
22
 
23
  elif app_mode == "In-Chat Terminal":
24
  st.header("In-Chat Terminal")
25
-
26
  def run_terminal_command(command):
27
  try:
28
  result = subprocess.run(command, shell=True, capture_output=True, text=True)
@@ -43,7 +43,7 @@ elif app_mode == "In-Chat Terminal":
43
  terminal_input = gr.Textbox(label="Enter Command or Code")
44
  terminal_output = gr.Textbox(label="Terminal Output", lines=10)
45
  terminal_button = gr.Button("Run")
46
-
47
  terminal_button.click(
48
  nlp_code_interpreter,
49
  inputs=terminal_input,
@@ -63,30 +63,26 @@ elif app_mode == "Tool Box":
63
  def deploy_to_huggingface(app_name):
64
  code = f"""
65
  import gradio as gr
66
-
67
  def run_terminal_command(command):
68
  try:
69
  result = subprocess.run(command, shell=True, capture_output=True, text=True)
70
  return result.stdout if result.returncode == 0 else result.stderr
71
  except Exception as e:
72
  return str(e)
73
-
74
  def nlp_code_interpreter(text):
75
  response = code_generator(text, max_length=150)
76
  code = response[0]['generated_text']
77
  return code, run_terminal_command(code)
78
-
79
  with gr.Blocks() as iface:
80
  terminal_input = gr.Textbox(label="Enter Command or Code")
81
  terminal_output = gr.Textbox(label="Terminal Output", lines=10)
82
  terminal_button = gr.Button("Run")
83
-
84
  terminal_button.click(
85
  nlp_code_interpreter,
86
  inputs=terminal_input,
87
  outputs=[terminal_output, terminal_output]
88
  )
89
-
90
  iface.launch()
91
  """
92
 
 
6
 
7
  # Initialize Hugging Face pipelines
8
  text_generator = pipeline("text-generation", model="gpt2")
9
+ code_generator = pipeline("text2text-generation", model="t5-base")
10
 
11
  # Streamlit App
12
  st.title("AI Dev Tool Kit")
 
22
 
23
  elif app_mode == "In-Chat Terminal":
24
  st.header("In-Chat Terminal")
25
+
26
  def run_terminal_command(command):
27
  try:
28
  result = subprocess.run(command, shell=True, capture_output=True, text=True)
 
43
  terminal_input = gr.Textbox(label="Enter Command or Code")
44
  terminal_output = gr.Textbox(label="Terminal Output", lines=10)
45
  terminal_button = gr.Button("Run")
46
+
47
  terminal_button.click(
48
  nlp_code_interpreter,
49
  inputs=terminal_input,
 
63
  def deploy_to_huggingface(app_name):
64
  code = f"""
65
  import gradio as gr
 
66
  def run_terminal_command(command):
67
  try:
68
  result = subprocess.run(command, shell=True, capture_output=True, text=True)
69
  return result.stdout if result.returncode == 0 else result.stderr
70
  except Exception as e:
71
  return str(e)
 
72
  def nlp_code_interpreter(text):
73
  response = code_generator(text, max_length=150)
74
  code = response[0]['generated_text']
75
  return code, run_terminal_command(code)
 
76
  with gr.Blocks() as iface:
77
  terminal_input = gr.Textbox(label="Enter Command or Code")
78
  terminal_output = gr.Textbox(label="Terminal Output", lines=10)
79
  terminal_button = gr.Button("Run")
80
+
81
  terminal_button.click(
82
  nlp_code_interpreter,
83
  inputs=terminal_input,
84
  outputs=[terminal_output, terminal_output]
85
  )
 
86
  iface.launch()
87
  """
88