import os import subprocess import random from huggingface_hub import InferenceClient import gradio as gr from safe_search import safe_search # Make sure you have this function defined from i_search import google from i_search import i_search as i_s from datetime import datetime import logging import json import nltk # Import nltk for the generate_text_chunked function from transformers import pipeline # Import pipeline from transformers nltk.download('punkt') # Download the punkt tokenizer if you haven't already now = datetime.now() date_time_str = now.strftime("%Y-%m-%d %H:%M:%S") client = InferenceClient( "mistralai/Mixtral-8x7B-Instruct-v0.1" ) # --- Set up logging --- logging.basicConfig( filename="app.log", # Name of the log file level=logging.INFO, # Set the logging level (INFO, DEBUG, etc.) format="%(asctime)s - %(levelname)s - %(message)s", ) agents = [ "WEB_DEV", "AI_SYSTEM_PROMPT", "PYTHON_CODE_DEV" ] ############################################ VERBOSE = True MAX_HISTORY = 5 # MODEL = "gpt-3.5-turbo" # "gpt-4" PREFIX = """ {date_time_str} Purpose: {purpose} Safe Search: {safe_search} """ LOG_PROMPT = """ PROMPT: {content} """ LOG_RESPONSE = """ RESPONSE: {resp} """ COMPRESS_HISTORY_PROMPT = """ You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens. History: {history} """ ACTION_PROMPT = """ You are a helpful AI assistant. You are working on the task: {task} Your current history is: {history} What is your next thought? thought: What is your next action? action: """ TASK_PROMPT = """ You are a helpful AI assistant. Your current history is: {history} What is the next task? task: """ UNDERSTAND_TEST_RESULTS_PROMPT = """ You are a helpful AI assistant. The test results are: {test_results} What do you want to know about the test results? thought: """ def format_prompt(message, history, max_history_turns=2): prompt = "" # Keep only the last 'max_history_turns' turns for user_prompt, bot_response in history[-max_history_turns:]: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def run_gpt( prompt_template, stop_tokens, max_tokens, purpose, **prompt_kwargs, ): seed = random.randint(1,1111111111111111) logging.info(f"Seed: {seed}") # Log the seed content = PREFIX.format( date_time_str=date_time_str, purpose=purpose, safe_search=safe_search, ) + prompt_template.format(**prompt_kwargs) if VERBOSE: logging.info(LOG_PROMPT.format(content)) # Log the prompt resp = client.text_generation(content, max_new_tokens=max_new_tokens, stop_sequences=stop_tokens, temperature=0.7, top_p=0.8, repetition_penalty=1.5) if VERBOSE: logging.info(LOG_RESPONSE.format([resp])) # Log the response return resp def generate( prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0, model="mistralai/Mixtral-8x7B-Instruct-v0.1" ): seed = random.randint(1, 1111111111111111) logging.info(f"Seed: {seed}") # Log the seed # Set the agent prompt based on agent_name if agent_name == "WEB_DEV": agent = "You are a helpful AI assistant. You are a web developer." elif agent_name == "AI_SYSTEM_PROMPT": agent = "You are a helpful AI assistant. You are an AI system." elif agent_name == "PYTHON_CODE_DEV": agent = "You are a helpful AI assistant. You are a Python code developer." else: agent = "You are a helpful AI assistant." system_prompt = f"{agent} {sys_prompt}".strip() temperature = max(float(temperature), 1e-2) top_p = float(top_p) # Add the system prompt to the beginning of the prompt formatted_prompt = f"{system_prompt} {prompt}" # Use 'prompt' here instead of 'message' formatted_prompt = format_prompt(formatted_prompt, history, max_history_turns=5) # Truncated history logging.info(f"Formatted Prompt: {formatted_prompt}") client = InferenceClient(model) if model != "mistralai/Mixtral-8x7B-Instruct-v0.1" else InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") stream = client.text_generation( formatted_prompt, temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, stream=True, details=True, return_full_text=False ) resp = "" for response in stream: resp += response.token.text yield resp # This allows for streaming the response if VERBOSE: logging.info(f"RESPONSE: {resp}") # Log the response directly def compress_history(purpose, task, history, directory): resp = run_gpt( COMPRESS_HISTORY_PROMPT, stop_tokens=["observation:", "task:", "action:", "thought:"], max_tokens=512, purpose=purpose, task=task, history=history, ) history = "observation: {}\n".format(resp) return history def call_search(purpose, task, history, directory, action_input): logging.info(f"CALLING SEARCH: {action_input}") try: if "http" in action_input: if "<" in action_input: action_input = action_input.strip("<") if ">" in action_input: action_input = action_input.strip(">") response = i_s(action_input) #response = google(search_return) logging.info(f"Search Result: {response}") history += "observation: search result is: {}\n".format(response) else: history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n" except Exception as e: history += "observation: {}'\n".format(e) return "MAIN", None, history, task def call_main(purpose, task, history, directory, action_input): logging.info(f"CALLING MAIN: {action_input}") resp = run_gpt( ACTION_PROMPT, stop_tokens=["observation:", "task:", "action:","thought:"], max_tokens=32000, purpose=purpose, task=task, history=history, ) lines = resp.strip().strip("\n").split("\n") for line in lines: if line == "": continue if line.startswith("thought: "): history += "{}\n".format(line) logging.info(f"Thought: {line}") elif line.startswith("action: "): action_name, action_input = parse_action(line) logging.info(f"Action: {action_name} - {action_input}") history += "{}\n".format(line) if "COMPLETE" in action_name or "COMPLETE" in action_input: task = "END" return action_name, action_input, history, task else: return action_name, action_input, history, task else: history += "{}\n".format(line) logging.info(f"Other Output: {line}") #history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line) #return action_name, action_input, history, task #assert False, "unknown action: {}".format(line) return "MAIN", None, history, task def call_set_task(purpose, task, history, directory, action_input): logging.info(f"CALLING SET_TASK: {action_input}") task = run_gpt( TASK_PROMPT, stop_tokens=[], max_tokens=64, purpose=purpose, task=task, history=history, ).strip("\n") history += "observation: task has been updated to: {}\n".format(task) return "MAIN", None, history, task def end_fn(purpose, task, history, directory, action_input): logging.info(f"CALLING END_FN: {action_input}") task = "END" return "COMPLETE", "COMPLETE", history, task NAME_TO_FUNC = { "MAIN": call_main, "UPDATE-TASK": call_set_task, "SEARCH": call_search, "COMPLETE": end_fn, } def run_action(purpose, task, history, directory, action_name, action_input): logging.info(f"RUNNING ACTION: {action_name} - {action_input}") try: if "RESPONSE" in action_name or "COMPLETE" in action_name: action_name="COMPLETE" task="END" return action_name, "COMPLETE", history, task # compress the history when it is long if len(history.split("\n")) > MAX_HISTORY: logging.info("COMPRESSING HISTORY") history = compress_history(purpose, task, history, directory) if not action_name in NAME_TO_FUNC: action_name="MAIN" if action_name == "" or action_name == None: action_name="MAIN" assert action_name in NAME_TO_FUNC logging.info(f"RUN: {action_name} - {action_input}") return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input) except Exception as e: history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n" logging.error(f"Error in run_action: {e}") return "MAIN", None, history, task def run(purpose,history): #print(purpose) #print(hist) task=None directory="./" if history: history=str(history).strip("[]") if not history: history = "" action_name = "UPDATE-TASK" if task is None else "MAIN" action_input = None while True: logging.info(f"---") logging.info(f"Purpose: {purpose}") logging.info(f"Task: {task}") logging.info(f"---") logging.info(f"History: {history}") logging.info(f"---") action_name, action_input, history, task = run_action( purpose, task, history, directory, action_name, action_input, ) yield (history) #yield ("",[(purpose,history)]) if task == "END": return (history) #return ("", [(purpose,history)]) ################################################ def format_prompt(message, history, max_history_turns=5): prompt = "" # Keep only the last 'max_history_turns' turns for user_prompt, bot_response in history[-max_history_turns:]: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt agents =[ "WEB_DEV", "AI_SYSTEM_PROMPT", "PYTHON_CODE_DEV" ] def generate( prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0, model="mistralai/Mixtral-8x7B-Instruct-v0.1" ): seed = random.randint(1,1111111111111111) # Correct the line: if agent_name == "WEB_DEV": agent = "You are a helpful AI assistant. You are a web developer." if agent_name == "AI_SYSTEM_PROMPT": agent = "You are a helpful AI assistant. You are an AI system." if agent_name == "PYTHON_CODE_DEV": agent = "You are a helpful AI assistant. You are a Python code developer." system_prompt = agent temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) # Add the system prompt to the beginning of the prompt formatted_prompt = f"{system_prompt} {prompt}" # Use 'prompt' here instead of 'message' formatted_prompt = format_prompt(formatted_prompt, history, max_history_turns=5) # Truncated history logging.info(f"Formatted Prompt: {formatted_prompt}") stream = client.text_generation(formatted_prompt, temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, stream=True, details=True, return_full_text=False) resp = "" for response in stream: resp += response.token.text yield resp # This allows for streaming the response if VERBOSE: logging.info(LOG_RESPONSE.format(resp)) # Pass resp to format def generate_text_chunked(input_text, model, generation_parameters, max_tokens_to_generate): """Generates text in chunks to avoid token limit errors.""" sentences = nltk.sent_tokenize(input_text) generated_text = [] generator = pipeline('text-generation', model=model) for sentence in sentences: # Tokenize the sentence and check if it's within the limit tokens = generator.tokenizer(sentence).input_ids if len(tokens) + max_tokens_to_generate <= 32768: # Generate text for this chunk response = generator(sentence, max_length=max_tokens_to_generate, **generation_parameters) generated_text.append(response[0]['generated_text']) else: # Handle cases where the sentence is too long # You could split the sentence further or skip it print(f"Sentence too long: {sentence}") return ''.join(generated_text) formatted_prompt = format_prompt(prompt, history, max_history_turns=5) # Truncated history logging.info(f"Formatted Prompt: {formatted_prompt}") stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output additional_inputs=[ gr.Dropdown( label="Agents", choices=[s for s in agents], value=agents[0], interactive=True, ), gr.Textbox( label="System Prompt", max_lines=1, interactive=True, ), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=1048*10, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ), ] examples = [ ["Help me set up TypeScript configurations and integrate ts-loader in my existing React project.", "Update Webpack Configurations", "Install Dependencies", "Configure Ts-Loader", "TypeChecking Rules Setup", "React Specific Settings", "Compilation Options", "Test Runner Configuration"], ["Guide me through building a serverless microservice using AWS Lambda and API Gateway, connecting to DynamoDB for storage.", "Set Up AWS Account", "Create Lambda Function", "APIGateway Integration", "Define DynamoDB Table Scheme", "Connect Service To DB", "Add Authentication Layers", "Monitor Metrics and Set Alarms"], ["Migrate our current monolithic PHP application towards containerized services using Docker and Kubernetes for scalability.", "Architectural Restructuring Plan", "Containerisation Process With Docker", "Service Orchestration With Kubernetes", "Load Balancing Strategies", "Persistent Storage Solutions", "Network Policies Enforcement", "Continuous Integration / Continuous Delivery"], ["Provide guidance on integrating WebAssembly modules compiled from C++ source files into an ongoing web project.", "Toolchain Selection (Emscripten vs. LLVM)", "Setting Up Compiler Environment", ".cpp Source Preparation", "Module Building Approach", "Memory Management Considerations", "Performance Tradeoffs", "Seamless Web Assembly Embedding"] ] def parse_action(line): action_name, action_input = line.strip("action: ").split("=") action_input = action_input.strip() return action_name, action_input def get_file_tree(path): """ Recursively explores a directory and returns a nested dictionary representing its file tree. """ tree = {} for item in os.listdir(path): item_path = os.path.join(path, item) if os.path.isdir(item_path): tree[item] = get_file_tree(item_path) else: tree[item] = None return tree def display_file_tree(tree, indent=0): """ Prints a formatted representation of the file tree. """ for name, subtree in tree.items(): print(f"{' ' * indent}{name}") if subtree is not None: display_file_tree(subtree, indent + 1) def project_explorer(path): """ Displays the file tree of a given path in a Streamlit app. """ tree = get_file_tree(path) tree_str = json.dumps(tree, indent=4) # Convert the tree to a string for display return tree_str def chat_app_logic(message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model): # Your existing code here try: # Pass 'message' as 'prompt' response = ''.join(generate( model=model, prompt=message, # Use 'prompt' here history=history, agent_name=agent_name, sys_prompt=sys_prompt, temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, )) except TypeError: # ... (rest of the exception handling) response_parts = [] for part in generate( model=model, prompt=message, # Use 'prompt' here history=history, agent_name=agent_name, sys_prompt=sys_prompt, temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, ): if isinstance(part, str): response_parts.append(part) elif isinstance(part, dict) and 'content' in part: response_parts.append(part['content']) response = ''.join(response_parts) history.append((message, response)) return history history.append((message, response)) return history def main(): with gr.Blocks() as demo: gr.Markdown("## FragMixt") gr.Markdown("### Agents w/ Agents") # Chat Interface chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel") #chatbot.load(examples) # Input Components message = gr.Textbox(label="Enter your message", placeholder="Ask me anything!") purpose = gr.Textbox(label="Purpose", placeholder="What is the purpose of this interaction?") agent_name = gr.Dropdown(label="Agents", choices=[s for s in agents], value=agents[0], interactive=True) sys_prompt = gr.Textbox(label="System Prompt", max_lines=1, interactive=True) temperature = gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs") max_new_tokens = gr.Slider(label="Max new tokens", value=1048*10, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens") top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens") repetition_penalty = gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens") model_input = gr.Textbox(label="Model", value="mistralai/Mixtral-8x7B-Instruct-v0.1", visible=False) # Button to submit the message submit_button = gr.Button(value="Send") # Project Explorer Tab with gr.Tab("Project Explorer"): project_path = gr.Textbox(label="Project Path", placeholder="/home/user/app/current_project") explore_button = gr.Button(value="Explore") project_output = gr.Textbox(label="File Tree", lines=20) # Chat App Logic Tab with gr.Tab("Chat App"): history = gr.State([]) for example in examples: gr.Button(value=example[0]).click(lambda: chat_app_logic(example[0], history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model=model_input), outputs=chatbot) # Connect components to the chat app logic submit_button.click(chat_app_logic, inputs=[message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model_input], outputs=chatbot) message.submit(chat_app_logic, inputs=[message, history, purpose, agent_name, sys_prompt, temperature, max_new_tokens, top_p, repetition_penalty, model_input], outputs=chatbot) # Connect components to the project explorer explore_button.click(project_explorer, inputs=project_path, outputs=project_output) demo.launch(show_api=True) if __name__ == "__main__": main()