import gradio as gr import numpy as np import tensorflow as tf from PIL import Image model = tf.keras.models.load_model('model') def predict_model(im): im = tf.image.convert_image_dtype(im,tf.float32) im = tf.expand_dims(im,axis=0) pred = model.predict(im) pred = pred[0] pred = tf.clip_by_value(pred, 0.0, 1.0) pred = Image.fromarray((np.array(pred) * 255).astype(np.uint8)) return pred inimage = gr.Image(shape=(None,None)) inimage.style(width=512,height=512) outimage = gr.Image(shape=(None,None)) outimage.style(width=512,height=512) app = gr.Interface(fn=predict_model, inputs=inimage, outputs=outimage,examples=['./assets/examples/creature.jpg', "./assets/examples/butterfly.jpeg", "./assets/examples/bw.jpg", "./assets/examples/hillbefore.jpg"]) if __name__ == "__main__": app.launch()