File size: 571 Bytes
2dcc05f
d687c1d
2dcc05f
d687c1d
2dcc05f
d687c1d
 
 
f16dddc
d687c1d
 
554ca16
 
 
d687c1d
 
f16dddc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import gradio as gr
from transformers import pipeline

pipeline = pipeline(task="image-classification", model="acidtib/tcg-magic-cards")

def predict(input_img):
    predictions = pipeline(input_img)
    return input_img, {p["label"]: p["score"] for p in predictions} 

gradio_app = gr.Interface(
    predict,
    inputs=gr.Image(label="Select Magic Card", sources=['upload', 'webcam'], type="pil"),
    outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
    title="Magic Card",
)

if __name__ == "__main__":
    gradio_app.launch()