Spaces:
Sleeping
Sleeping
File size: 4,299 Bytes
b99bb69 21eb51f b99bb69 7e7acc6 b99bb69 7e7acc6 21eb51f 7e7acc6 b99bb69 7e7acc6 b99bb69 a85fcba b99bb69 7e7acc6 b99bb69 7e7acc6 b99bb69 21eb51f b99bb69 21eb51f b99bb69 21eb51f b99bb69 7e7acc6 a85fcba 7e7acc6 21eb51f 7e7acc6 21eb51f 7e7acc6 21eb51f 7e7acc6 a85fcba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import gradio as gr
from transformers import pipeline
import numpy as np
import pandas as pd
import re
from collections import Counter
from functools import reduce
transcriber = pipeline(
"automatic-speech-recognition",
model="openai/whisper-base.en",
return_timestamps=True,
)
def transcribe_live(state, words_list, new_chunk):
try:
words_to_check_for = [word.strip().lower() for word in words_list.split(",")]
except:
gr.Warning("Please enter a valid list of words to check for")
words_to_check_for = []
stream = state.get("stream", None)
previous_transcription = state.get("full_transcription", "")
previous_counts_of_words = state.get(
"counts_of_words", {word: 0 for word in words_to_check_for}
)
if new_chunk is None:
gr.Info("You can start transcribing by clicking on the Record button")
print("new chunk is None")
return state, previous_counts_of_words, previous_transcription
sr, y = new_chunk
# Convert to mono if stereo
if y.ndim > 1:
y = y.mean(axis=1)
y = y.astype(np.float32)
y /= np.max(np.abs(y))
if stream is not None:
stream = np.concatenate([stream, y])
else:
stream = y
try:
new_transcription = transcriber({"sampling_rate": sr, "raw": stream})
print(f"new transcription: {new_transcription}")
except Exception as e:
gr.Error(f"Transcription failed. Error: {e}")
print(f"Transcription failed. Error: {e}")
return state, previous_counts_of_words, previous_transcription
full_transcription_text = new_transcription["text"]
full_transcription_text_lower = full_transcription_text.lower()
# Use re to find all the words in the transcription, and their start and end indices
matches: list[re.Match] = list(
re.finditer(
r"\b(" + "|".join(words_to_check_for) + r")\b",
full_transcription_text_lower,
)
)
counter = Counter(
match.group(0) for match in matches if match.group(0) in words_to_check_for
)
new_counts_of_words = {word: counter.get(word, 0) for word in words_to_check_for}
new_highlighted_transcription = {
"text": full_transcription_text,
"entities": [
{
"entity": "FILLER",
"start": match.start(),
"end": match.end(),
}
for match in matches
],
}
new_state = {
"stream": stream,
"full_transcription": full_transcription_text,
"counts_of_words": new_counts_of_words,
"highlighted_transcription": new_highlighted_transcription,
}
return (
new_state,
new_counts_of_words,
full_transcription_text,
new_highlighted_transcription,
)
with gr.Blocks() as demo:
state = gr.State(
value={
"stream": None,
"full_transcription": "",
"counts_of_words": {},
}
)
gr.Markdown(
"""
# GrammASRian
This app transcribes your speech in real-time and counts the number of filler words you use.
The intended use case is to help you become more aware of the filler words you use, so you can reduce them and improve your speech.
It uses the OpenAI Whisper model for transcription on a streaming configuration.
"""
)
filler_words = gr.Textbox(label="List of filer words", value="like, so, you know", info="Enter a comma-separated list of words to check for")
recording = gr.Audio(streaming=True, label="Recording")
word_counts = gr.JSON(label="Filler words count", value={})
# word_counts = gr.BarPlot(label="Filler words count", value={})
transcription = gr.Textbox(label="Transcription", value="", visible=False)
highlighted_transcription = gr.HighlightedText(
label="Transcription",
value={
"text": "",
"entities": [],
},
color_map={"FILLER": "red"},
)
recording.stream(
transcribe_live,
inputs=[state, filler_words, recording],
outputs=[state, word_counts, transcription, highlighted_transcription],
stream_every=5,
time_limit=-1,
)
demo.launch()
|