import gradio as gr import tensorflow as tf from tensorflow import keras from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.image import resize model = keras.models.load_model('memeclf.h5') def predict(image): img = resize(image, (256, 256)) img = img_to_array(img) img = tf.expand_dims(img, axis=0) img = tf.cast(img/255. ,tf.float32) predictions = model.predict(img) if predictions[0] < 0.5: return "Image is a meme" else: return "Image is not a meme" interface = gr.Interface( fn=predict, inputs=gr.Image(), outputs="label", title="Meme Classifier", description="Upload an image and the model will predict if it's a meme or not.", theme="huggingface" ) interface.launch()