acverma commited on
Commit
ab5b1b6
·
1 Parent(s): 269503c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -16
app.py CHANGED
@@ -51,7 +51,14 @@ processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base",appl
51
 
52
  model = LayoutLMv3ForTokenClassification.from_pretrained("nielsr/layoutlmv3-finetuned-funsd")
53
 
54
- dataset = load_dataset("nielsr/funsd-layoutlmv3")
 
 
 
 
 
 
 
55
 
56
  example = dataset["test"][0]
57
  example["image"].save("example1.png")
@@ -106,7 +113,7 @@ def get_label_list(labels):
106
  label_list.sort()
107
  return label_list
108
 
109
- label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
110
 
111
  def unnormalize_box(bbox, width, height):
112
  return [
@@ -116,14 +123,11 @@ def unnormalize_box(bbox, width, height):
116
  height * (bbox[3] / 1000),
117
  ]
118
 
119
- # we need to define custom features for `set_format` (used later on) to work properly
120
- features = Features({
121
- 'pixel_values': Array3D(dtype="float32", shape=(3, 224, 224)),
122
- 'input_ids': Sequence(feature=Value(dtype='int64')),
123
- 'attention_mask': Sequence(Value(dtype='int64')),
124
- 'bbox': Array2D(dtype="int64", shape=(512, 4)),
125
- 'labels': Sequence(feature=Value(dtype='int64')),
126
- })
127
 
128
  def process_image(image):
129
  width, height = image.size
@@ -148,12 +152,6 @@ def process_image(image):
148
  draw = ImageDraw.Draw(image)
149
  font = ImageFont.load_default()
150
 
151
- def iob_to_label(labels):
152
- labels= labels[2:]
153
- if not labels:
154
- return 'other'
155
- return labels
156
-
157
  label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
158
  for prediction, box in zip(true_predictions, true_boxes):
159
  predicted_label = iob_to_label(prediction) #.lower()
 
51
 
52
  model = LayoutLMv3ForTokenClassification.from_pretrained("nielsr/layoutlmv3-finetuned-funsd")
53
 
54
+ dataset = load_dataset("nielsr/funsd", split="test")
55
+ image = Image.open(dataset[0]["image_path"]).convert("RGB")
56
+ image = Image.open("./invoice.png")
57
+ image.save("document.png")
58
+
59
+
60
+
61
+ #dataset = load_dataset("nielsr/funsd-layoutlmv3")
62
 
63
  example = dataset["test"][0]
64
  example["image"].save("example1.png")
 
113
  label_list.sort()
114
  return label_list
115
 
116
+ #label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
117
 
118
  def unnormalize_box(bbox, width, height):
119
  return [
 
123
  height * (bbox[3] / 1000),
124
  ]
125
 
126
+ def iob_to_label(label):
127
+ label= label[2:]
128
+ if not label:
129
+ return 'other'
130
+ return label
 
 
 
131
 
132
  def process_image(image):
133
  width, height = image.size
 
152
  draw = ImageDraw.Draw(image)
153
  font = ImageFont.load_default()
154
 
 
 
 
 
 
 
155
  label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
156
  for prediction, box in zip(true_predictions, true_boxes):
157
  predicted_label = iob_to_label(prediction) #.lower()