Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,433 Bytes
ae18532 1fdf076 ae18532 1fdf076 ae18532 1fdf076 ae18532 0177258 ae18532 0177258 ae18532 0177258 ae18532 0177258 ae18532 0177258 ae18532 0177258 ae18532 0177258 ae18532 0177258 ae18532 0177258 ae18532 67ca03a ae18532 0177258 67ca03a ae18532 67ca03a ae18532 67ca03a ae18532 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import functools
import inspect
import json
import re
import time
from datetime import datetime
from itertools import product
from typing import Callable, TypeVar
import anyio
import spaces
import torch
from anyio import Semaphore
from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import PromptParser
from typing_extensions import ParamSpec
from .loader import Loader
__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="transformers")
__import__("transformers").logging.set_verbosity_error()
T = TypeVar("T")
P = ParamSpec("P")
MAX_CONCURRENT_THREADS = 1
MAX_THREADS_GUARD = Semaphore(MAX_CONCURRENT_THREADS)
with open("./data/styles.json") as f:
STYLES = json.load(f)
# like the original but supports args and kwargs instead of a dict
# https://github.com/huggingface/huggingface-inference-toolkit/blob/0.2.0/src/huggingface_inference_toolkit/async_utils.py
async def async_call(fn: Callable[P, T], *args: P.args, **kwargs: P.kwargs) -> T:
async with MAX_THREADS_GUARD:
sig = inspect.signature(fn)
bound_args = sig.bind(*args, **kwargs)
bound_args.apply_defaults()
partial_fn = functools.partial(fn, **bound_args.arguments)
return await anyio.to_thread.run_sync(partial_fn)
# parse prompts with arrays
def parse_prompt(prompt: str) -> list[str]:
arrays = re.findall(r"\[\[(.*?)\]\]", prompt)
if not arrays:
return [prompt]
tokens = [item.split(",") for item in arrays]
combinations = list(product(*tokens))
prompts = []
for combo in combinations:
current_prompt = prompt
for i, token in enumerate(combo):
current_prompt = current_prompt.replace(f"[[{arrays[i]}]]", token.strip(), 1)
prompts.append(current_prompt)
return prompts
def apply_style(prompt, style_id, negative=False):
global STYLES
if not style_id or style_id == "None":
return prompt
for style in STYLES:
if style["id"] == style_id:
if negative:
return prompt + " . " + style["negative_prompt"]
else:
return style["prompt"].format(prompt=prompt)
return prompt
def gpu_duration(**kwargs):
base = 20
duration = 20
scale = kwargs.get("scale", 1)
num_images = kwargs.get("num_images", 1)
use_refiner = kwargs.get("use_refiner", False)
if use_refiner:
base += 10
if scale == 2:
duration += 5
elif scale == 4:
duration += 10
return base + (duration * num_images)
@spaces.GPU(duration=gpu_duration)
def generate(
positive_prompt,
negative_prompt="",
style=None,
seed=None,
model="stabilityai/stable-diffusion-xl-base-1.0",
scheduler="DDIM",
width=1024,
height=1024,
guidance_scale=7.5,
inference_steps=40,
deepcache=1,
scale=1,
num_images=1,
use_karras=False,
use_refiner=False,
Info: Callable[[str], None] = None,
Error=Exception,
progress=None,
):
if not torch.cuda.is_available():
raise Error("RuntimeError: CUDA not available")
# https://pytorch.org/docs/stable/generated/torch.manual_seed.html
if seed is None or seed < 0:
seed = int(datetime.now().timestamp() * 1_000_000) % (2**64)
KIND = "txt2img"
CURRENT_STEP = 0
CURRENT_IMAGE = 1
EMBEDDINGS_TYPE = ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED
if progress is not None:
TQDM = False
progress((0, inference_steps), desc=f"Generating image 1/{num_images}")
else:
TQDM = True
def callback_on_step_end(pipeline, step, timestep, latents):
nonlocal CURRENT_IMAGE, CURRENT_STEP
if progress is None:
return latents
strength = 1
total_steps = min(int(inference_steps * strength), inference_steps)
# if steps are different we're in the refiner
refining = False
if CURRENT_STEP == step:
CURRENT_STEP = step + 1
else:
refining = True
CURRENT_STEP += 1
progress(
(CURRENT_STEP, total_steps),
desc=f"{'Refining' if refining else 'Generating'} image {CURRENT_IMAGE}/{num_images}",
)
return latents
start = time.perf_counter()
loader = Loader()
loader.load(
KIND,
model,
scheduler,
deepcache,
scale,
use_karras,
use_refiner,
TQDM,
)
pipe = loader.pipe
refiner = loader.refiner
upscaler = None
if scale == 2:
upscaler = loader.upscaler_2x
if scale == 4:
upscaler = loader.upscaler_4x
# prompt embeds for base and refiner
compel_1 = Compel(
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
requires_pooled=[False, True],
returned_embeddings_type=EMBEDDINGS_TYPE,
dtype_for_device_getter=lambda _: pipe.dtype,
device=pipe.device,
)
compel_2 = Compel(
text_encoder=[pipe.text_encoder_2],
tokenizer=[pipe.tokenizer_2],
requires_pooled=[True],
returned_embeddings_type=EMBEDDINGS_TYPE,
dtype_for_device_getter=lambda _: pipe.dtype,
device=pipe.device,
)
images = []
current_seed = seed
for i in range(num_images):
# seeded generator for each iteration
generator = torch.Generator(device=pipe.device).manual_seed(current_seed)
try:
styled_negative_prompt = apply_style(negative_prompt, style, negative=True)
all_positive_prompts = parse_prompt(positive_prompt)
prompt_index = i % len(all_positive_prompts)
prompt = all_positive_prompts[prompt_index]
styled_prompt = apply_style(prompt, style)
conditioning_1, pooled_1 = compel_1([styled_prompt, styled_negative_prompt])
conditioning_2, pooled_2 = compel_2([styled_prompt, styled_negative_prompt])
except PromptParser.ParsingException:
raise Error("ValueError: Invalid prompt")
# refiner expects latents; upscaler expects numpy array
pipe_output_type = "pil"
refiner_output_type = "pil"
if use_refiner:
pipe_output_type = "latent"
if scale > 1:
refiner_output_type = "np"
else:
if scale > 1:
pipe_output_type = "np"
pipe_kwargs = {
"width": width,
"height": height,
"denoising_end": 0.8 if use_refiner else None,
"generator": generator,
"output_type": pipe_output_type,
"guidance_scale": guidance_scale,
"num_inference_steps": inference_steps,
"prompt_embeds": conditioning_1[0:1],
"pooled_prompt_embeds": pooled_1[0:1],
"negative_prompt_embeds": conditioning_1[1:2],
"negative_pooled_prompt_embeds": pooled_1[1:2],
}
if progress is not None:
pipe_kwargs["callback_on_step_end"] = callback_on_step_end
try:
image = pipe(**pipe_kwargs).images[0]
refiner_kwargs = {
"image": image,
"denoising_start": 0.8,
"generator": generator,
"output_type": refiner_output_type,
"guidance_scale": guidance_scale,
"num_inference_steps": inference_steps,
"prompt_embeds": conditioning_2[0:1],
"pooled_prompt_embeds": pooled_2[0:1],
"negative_prompt_embeds": conditioning_2[1:2],
"negative_pooled_prompt_embeds": pooled_2[1:2],
}
if progress is not None:
refiner_kwargs["callback_on_step_end"] = callback_on_step_end
if use_refiner:
image = refiner(**refiner_kwargs).images[0]
if scale > 1:
image = upscaler.predict(image)
images.append((image, str(current_seed)))
except Exception as e:
raise Error(f"RuntimeError: {e}")
finally:
CURRENT_STEP = 0
CURRENT_IMAGE += 1
current_seed += 1
diff = time.perf_counter() - start
if Info:
Info(f"Generated {len(images)} image{'s' if len(images) > 1 else ''} in {diff:.2f}s")
return images
|