Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
from threading import Lock | |
from warnings import filterwarnings | |
import torch | |
from DeepCache import DeepCacheSDHelper | |
from diffusers.models import AutoencoderKL | |
from .config import Config | |
from .upscaler import RealESRGAN | |
__import__("diffusers").logging.set_verbosity_error() | |
filterwarnings("ignore", category=FutureWarning, module="torch") | |
filterwarnings("ignore", category=FutureWarning, module="diffusers") | |
class Loader: | |
_instance = None | |
_lock = Lock() | |
def __new__(cls): | |
with cls._lock: | |
if cls._instance is None: | |
cls._instance = super().__new__(cls) | |
cls._instance.pipe = None | |
cls._instance.model = None | |
cls._instance.refiner = None | |
cls._instance.upscaler = None | |
return cls._instance | |
def _flush(self): | |
gc.collect() | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |
torch.cuda.synchronize() | |
def _should_unload_pipeline(self, model=""): | |
if self.pipe is None: | |
return False | |
if self.model.lower() != model.lower(): | |
return True | |
return False | |
def _should_unload_refiner(self, refiner): | |
if self.refiner is not None and not refiner: | |
return True | |
return False | |
def _should_unload_upscaler(self, scale=1): | |
return self.upscaler is not None and scale == 1 | |
def _unload(self, model, refiner, scale): | |
to_unload = [] | |
if self._should_unload_upscaler(scale): | |
to_unload.append("upscaler") | |
if self._should_unload_refiner(refiner): | |
to_unload.append("refiner") | |
if self._should_unload_pipeline(model): | |
to_unload.append("model") | |
to_unload.append("pipe") | |
for component in to_unload: | |
delattr(self, component) | |
self._flush() | |
for component in to_unload: | |
setattr(self, component, None) | |
def _load_pipeline(self, kind, model, tqdm, **kwargs): | |
pipeline = Config.PIPELINES[kind] | |
if self.pipe is None: | |
try: | |
print(f"Loading {model}...") | |
self.pipe = pipeline.from_pretrained(model, **kwargs).to("cuda") | |
self.model = model | |
except Exception as e: | |
print(f"Error loading {model}: {e}") | |
self.model = None | |
self.pipe = None | |
return | |
if not isinstance(self.pipe, pipeline): | |
self.pipe = pipeline.from_pipe(self.pipe).to("cuda") | |
if self.pipe is not None: | |
self.pipe.set_progress_bar_config(disable=not tqdm) | |
def _load_refiner(self, refiner, tqdm, **kwargs): | |
if self.refiner is None and refiner: | |
model = Config.REFINER_MODEL | |
pipeline = Config.PIPELINES["img2img"] | |
try: | |
print(f"Loading {model}...") | |
self.refiner = pipeline.from_pretrained(model, **kwargs).to("cuda") | |
except Exception as e: | |
print(f"Error loading {model}: {e}") | |
self.refiner = None | |
return | |
if self.refiner is not None: | |
self.refiner.set_progress_bar_config(disable=not tqdm) | |
def _load_upscaler(self, scale=1): | |
if scale > 1 and self.upscaler is None: | |
print(f"Loading {scale}x upscaler...") | |
self.upscaler = RealESRGAN(scale, "cuda") | |
self.upscaler.load_weights() | |
def _load_deepcache(self, interval=1): | |
has_deepcache = hasattr(self.pipe, "deepcache") | |
if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval: | |
return | |
if has_deepcache: | |
self.pipe.deepcache.disable() | |
else: | |
self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe) | |
self.pipe.deepcache.set_params(cache_interval=interval) | |
self.pipe.deepcache.enable() | |
def load(self, kind, model, scheduler, deepcache, scale, karras, refiner, tqdm): | |
model_lower = model.lower() | |
scheduler_kwargs = { | |
"beta_start": 0.00085, | |
"beta_end": 0.012, | |
"beta_schedule": "scaled_linear", | |
"timestep_spacing": "leading", | |
"steps_offset": 1, | |
} | |
if scheduler not in ["DDIM", "Euler a", "PNDM"]: | |
scheduler_kwargs["use_karras_sigmas"] = karras | |
# https://github.com/huggingface/diffusers/blob/8a3f0c1/scripts/convert_original_stable_diffusion_to_diffusers.py#L939 | |
if scheduler == "DDIM": | |
scheduler_kwargs["clip_sample"] = False | |
scheduler_kwargs["set_alpha_to_one"] = False | |
# no fp16 variant (already half-precision) | |
if model_lower not in ["cagliostrolab/animagine-xl-3.1", "fluently/fluently-xl-final"]: | |
variant = "fp16" | |
else: | |
variant = None | |
dtype = torch.float16 | |
pipe_kwargs = { | |
"variant": variant, | |
"torch_dtype": dtype, | |
"add_watermarker": False, | |
"scheduler": Config.SCHEDULERS[scheduler](**scheduler_kwargs), | |
"vae": AutoencoderKL.from_pretrained(Config.VAE_MODEL, torch_dtype=dtype), | |
} | |
self._unload(model, refiner, scale) | |
self._load_pipeline(kind, model, tqdm, **pipe_kwargs) | |
# error loading model | |
if self.pipe is None: | |
return None, None, None | |
same_scheduler = isinstance(self.pipe.scheduler, Config.SCHEDULERS[scheduler]) | |
same_karras = ( | |
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas") | |
or self.pipe.scheduler.config.use_karras_sigmas == karras | |
) | |
# same model, different scheduler | |
if self.model.lower() == model_lower: | |
if not same_scheduler: | |
print(f"Switching to {scheduler}...") | |
if not same_karras: | |
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...") | |
if not same_scheduler or not same_karras: | |
self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs) | |
# https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/model_index.json | |
refiner_kwargs = { | |
"variant": "fp16", | |
"torch_dtype": dtype, | |
"add_watermarker": False, | |
"requires_aesthetics_score": True, | |
"force_zeros_for_empty_prompt": False, | |
"vae": self.pipe.vae, | |
"scheduler": self.pipe.scheduler, | |
"tokenizer_2": self.pipe.tokenizer_2, | |
"text_encoder_2": self.pipe.text_encoder_2, | |
} | |
self._load_refiner(refiner, tqdm, **refiner_kwargs) | |
self._load_upscaler(scale) | |
self._load_deepcache(deepcache) | |
return self.pipe, self.refiner, self.upscaler | |