diffusion-xl / lib /loader.py
adamelliotfields's picture
Single file checkpoints
fe2bc86 verified
raw
history blame
8.25 kB
import gc
from threading import Lock
from warnings import filterwarnings
import torch
from DeepCache import DeepCacheSDHelper
from diffusers.models import AutoencoderKL
from .config import Config
from .upscaler import RealESRGAN
__import__("diffusers").logging.set_verbosity_error()
filterwarnings("ignore", category=FutureWarning, module="torch")
filterwarnings("ignore", category=FutureWarning, module="diffusers")
class Loader:
_instance = None
_lock = Lock()
def __new__(cls):
with cls._lock:
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance.pipe = None
cls._instance.model = None
cls._instance.refiner = None
cls._instance.upscaler_2x = None
cls._instance.upscaler_4x = None
return cls._instance
def _flush(self):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
def _should_unload_pipeline(self, model=""):
if self.pipe is None:
return False
if self.model.lower() != model.lower():
return True
return False
def _unload(self, model):
to_unload = []
if self._should_unload_pipeline(model):
to_unload.append("model")
to_unload.append("pipe")
for component in to_unload:
delattr(self, component)
self._flush()
for component in to_unload:
setattr(self, component, None)
def _load_pipeline(self, kind, model, tqdm, **kwargs):
pipeline = Config.PIPELINES[kind]
if self.pipe is None:
try:
print(f"Loading {model}...")
self.model = model
if model.lower() in Config.MODEL_CHECKPOINTS.keys():
self.pipe = pipeline.from_single_file(
f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}",
**kwargs,
).to("cuda")
else:
self.pipe = pipeline.from_pretrained(model, **kwargs).to("cuda")
if self.refiner is not None:
self.refiner.vae = self.pipe.vae
self.refiner.scheduler = self.pipe.scheduler
self.refiner.tokenizer_2 = self.pipe.tokenizer_2
self.refiner.text_encoder_2 = self.pipe.text_encoder_2
except Exception as e:
print(f"Error loading {model}: {e}")
self.model = None
self.pipe = None
return
if not isinstance(self.pipe, pipeline):
self.pipe = pipeline.from_pipe(self.pipe).to("cuda")
if self.pipe is not None:
self.pipe.set_progress_bar_config(disable=not tqdm)
def _load_refiner(self, refiner, tqdm, **kwargs):
if refiner and self.refiner is None:
model = Config.REFINER_MODEL
pipeline = Config.PIPELINES["img2img"]
try:
print(f"Loading {model}...")
self.refiner = pipeline.from_pretrained(model, **kwargs).to("cuda")
except Exception as e:
print(f"Error loading {model}: {e}")
self.refiner = None
return
if self.refiner is not None:
self.refiner.set_progress_bar_config(disable=not tqdm)
def _load_upscaler(self, scale=1):
if scale == 2 and self.upscaler_2x is None:
try:
print("Loading 2x upscaler...")
self.upscaler_2x = RealESRGAN(2, "cuda")
self.upscaler_2x.load_weights()
except Exception as e:
print(f"Error loading 2x upscaler: {e}")
self.upscaler_2x = None
if scale == 4 and self.upscaler_4x is None:
try:
print("Loading 4x upscaler...")
self.upscaler_4x = RealESRGAN(4, "cuda")
self.upscaler_4x.load_weights()
except Exception as e:
print(f"Error loading 4x upscaler: {e}")
self.upscaler_4x = None
def _load_deepcache(self, interval=1):
pipe_has_deepcache = hasattr(self.pipe, "deepcache")
if pipe_has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval:
return
if pipe_has_deepcache:
self.pipe.deepcache.disable()
else:
self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe)
self.pipe.deepcache.set_params(cache_interval=interval)
self.pipe.deepcache.enable()
if self.refiner is not None:
refiner_has_deepcache = hasattr(self.refiner, "deepcache")
if refiner_has_deepcache and self.refiner.deepcache.params["cache_interval"] == interval:
return
if refiner_has_deepcache:
self.refiner.deepcache.disable()
else:
self.refiner.deepcache = DeepCacheSDHelper(pipe=self.refiner)
self.refiner.deepcache.set_params(cache_interval=interval)
self.refiner.deepcache.enable()
def load(self, kind, model, scheduler, deepcache, scale, karras, refiner, tqdm):
model_lower = model.lower()
scheduler_kwargs = {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"timestep_spacing": "leading",
"steps_offset": 1,
}
if scheduler not in ["DDIM", "Euler a"]:
scheduler_kwargs["use_karras_sigmas"] = karras
# https://github.com/huggingface/diffusers/blob/8a3f0c1/scripts/convert_original_stable_diffusion_to_diffusers.py#L939
if scheduler == "DDIM":
scheduler_kwargs["clip_sample"] = False
scheduler_kwargs["set_alpha_to_one"] = False
# no fp16 variant (already half-precision)
if model_lower not in ["cagliostrolab/animagine-xl-3.1", "fluently/fluently-xl-final"]:
variant = "fp16"
else:
variant = None
dtype = torch.float16
pipe_kwargs = {
"variant": variant,
"torch_dtype": dtype,
"add_watermarker": False,
"scheduler": Config.SCHEDULERS[scheduler](**scheduler_kwargs),
"vae": AutoencoderKL.from_pretrained(Config.VAE_MODEL, torch_dtype=dtype),
}
self._unload(model)
self._load_pipeline(kind, model, tqdm, **pipe_kwargs)
# error loading model
if self.pipe is None:
return
same_scheduler = isinstance(self.pipe.scheduler, Config.SCHEDULERS[scheduler])
same_karras = (
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
or self.pipe.scheduler.config.use_karras_sigmas == karras
)
# same model, different scheduler
if self.model.lower() == model_lower:
if not same_scheduler:
print(f"Switching to {scheduler}...")
if not same_karras:
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
if not same_scheduler or not same_karras:
self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs)
if self.refiner is not None:
self.refiner.scheduler = self.pipe.scheduler
# https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/model_index.json
refiner_kwargs = {
"variant": "fp16",
"torch_dtype": dtype,
"add_watermarker": False,
"requires_aesthetics_score": True,
"force_zeros_for_empty_prompt": False,
"vae": self.pipe.vae,
"scheduler": self.pipe.scheduler,
"tokenizer_2": self.pipe.tokenizer_2,
"text_encoder_2": self.pipe.text_encoder_2,
}
self._load_refiner(refiner, tqdm, **refiner_kwargs)
self._load_upscaler(scale)
self._load_deepcache(deepcache)