Spaces:
Running
on
Zero
Running
on
Zero
adamelliotfields
commited on
Commit
•
80551a9
1
Parent(s):
083766b
Memory improvements
Browse files- lib/inference.py +6 -6
- lib/loader.py +104 -63
- lib/upscaler.py +4 -0
lib/inference.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import re
|
2 |
import time
|
3 |
from datetime import datetime
|
@@ -150,12 +151,7 @@ def generate(
|
|
150 |
|
151 |
pipe = loader.pipe
|
152 |
refiner = loader.refiner
|
153 |
-
|
154 |
-
upscaler = None
|
155 |
-
if scale == 2:
|
156 |
-
upscaler = loader.upscaler_2x
|
157 |
-
if scale == 4:
|
158 |
-
upscaler = loader.upscaler_4x
|
159 |
|
160 |
# prompt embeds for base and refiner
|
161 |
compel_1 = Compel(
|
@@ -251,6 +247,10 @@ def generate(
|
|
251 |
CURRENT_STEP = 0
|
252 |
CURRENT_IMAGE += 1
|
253 |
|
|
|
|
|
|
|
|
|
254 |
diff = time.perf_counter() - start
|
255 |
if Info:
|
256 |
Info(f"Generated {len(images)} image{'s' if len(images) > 1 else ''} in {diff:.2f}s")
|
|
|
1 |
+
import gc
|
2 |
import re
|
3 |
import time
|
4 |
from datetime import datetime
|
|
|
151 |
|
152 |
pipe = loader.pipe
|
153 |
refiner = loader.refiner
|
154 |
+
upscaler = loader.upscaler
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
# prompt embeds for base and refiner
|
157 |
compel_1 = Compel(
|
|
|
247 |
CURRENT_STEP = 0
|
248 |
CURRENT_IMAGE += 1
|
249 |
|
250 |
+
# cleanup
|
251 |
+
loader.collect()
|
252 |
+
gc.collect()
|
253 |
+
|
254 |
diff = time.perf_counter() - start
|
255 |
if Info:
|
256 |
Info(f"Generated {len(images)} image{'s' if len(images) > 1 else ''} in {diff:.2f}s")
|
lib/loader.py
CHANGED
@@ -20,21 +20,25 @@ class Loader:
|
|
20 |
cls._instance.pipe = None
|
21 |
cls._instance.model = None
|
22 |
cls._instance.refiner = None
|
23 |
-
cls._instance.
|
24 |
-
cls._instance.upscaler_4x = None
|
25 |
return cls._instance
|
26 |
|
27 |
-
def
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
def
|
35 |
-
if self.
|
36 |
return False
|
37 |
-
if
|
|
|
|
|
|
|
|
|
|
|
38 |
return True
|
39 |
return False
|
40 |
|
@@ -46,31 +50,93 @@ class Loader:
|
|
46 |
return True
|
47 |
return False
|
48 |
|
49 |
-
def
|
50 |
-
if self.pipe
|
51 |
-
return
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
55 |
if self.refiner is not None:
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
to_unload = []
|
64 |
-
if self._should_unload_deepcache(deepcache):
|
65 |
self._unload_deepcache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
if self._should_unload_pipeline(model):
|
|
|
67 |
to_unload.append("model")
|
68 |
to_unload.append("pipe")
|
69 |
-
|
70 |
-
|
71 |
-
self._flush()
|
72 |
for component in to_unload:
|
73 |
setattr(self, component, None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
def _load_deepcache(self, interval=1):
|
76 |
pipe_has_deepcache = hasattr(self.pipe, "deepcache")
|
@@ -98,7 +164,7 @@ class Loader:
|
|
98 |
pipeline = Config.PIPELINES[kind]
|
99 |
if self.pipe is None:
|
100 |
try:
|
101 |
-
print(f"Loading {model}
|
102 |
self.model = model
|
103 |
if model.lower() in Config.MODEL_CHECKPOINTS.keys():
|
104 |
self.pipe = pipeline.from_single_file(
|
@@ -112,6 +178,7 @@ class Loader:
|
|
112 |
self.refiner.scheduler = self.pipe.scheduler
|
113 |
self.refiner.tokenizer_2 = self.pipe.tokenizer_2
|
114 |
self.refiner.text_encoder_2 = self.pipe.text_encoder_2
|
|
|
115 |
except Exception as e:
|
116 |
print(f"Error loading {model}: {e}")
|
117 |
self.model = None
|
@@ -122,37 +189,11 @@ class Loader:
|
|
122 |
if self.pipe is not None:
|
123 |
self.pipe.set_progress_bar_config(disable=progress is not None)
|
124 |
|
125 |
-
def
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
print(f"Loading {model}...")
|
131 |
-
self.refiner = pipeline.from_pretrained(model, **kwargs).to("cuda")
|
132 |
-
except Exception as e:
|
133 |
-
print(f"Error loading {model}: {e}")
|
134 |
-
self.refiner = None
|
135 |
-
return
|
136 |
-
if self.refiner is not None:
|
137 |
-
self.refiner.set_progress_bar_config(disable=progress is not None)
|
138 |
-
|
139 |
-
def _load_upscaler(self, scale=1):
|
140 |
-
if scale == 2 and self.upscaler_2x is None:
|
141 |
-
try:
|
142 |
-
print("Loading 2x upscaler...")
|
143 |
-
self.upscaler_2x = RealESRGAN(2, "cuda")
|
144 |
-
self.upscaler_2x.load_weights()
|
145 |
-
except Exception as e:
|
146 |
-
print(f"Error loading 2x upscaler: {e}")
|
147 |
-
self.upscaler_2x = None
|
148 |
-
if scale == 4 and self.upscaler_4x is None:
|
149 |
-
try:
|
150 |
-
print("Loading 4x upscaler...")
|
151 |
-
self.upscaler_4x = RealESRGAN(4, "cuda")
|
152 |
-
self.upscaler_4x.load_weights()
|
153 |
-
except Exception as e:
|
154 |
-
print(f"Error loading 4x upscaler: {e}")
|
155 |
-
self.upscaler_4x = None
|
156 |
|
157 |
def load(self, kind, model, scheduler, deepcache, scale, karras, refiner, progress):
|
158 |
scheduler_kwargs = {
|
@@ -185,7 +226,7 @@ class Loader:
|
|
185 |
"vae": AutoencoderKL.from_pretrained(Config.VAE_MODEL, torch_dtype=dtype),
|
186 |
}
|
187 |
|
188 |
-
self._unload(model, deepcache)
|
189 |
self._load_pipeline(kind, model, progress, **pipe_kwargs)
|
190 |
|
191 |
# error loading model
|
@@ -201,9 +242,9 @@ class Loader:
|
|
201 |
# same model, different scheduler
|
202 |
if self.model.lower() == model.lower():
|
203 |
if not same_scheduler:
|
204 |
-
print(f"Switching to {scheduler}
|
205 |
if not same_karras:
|
206 |
-
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas
|
207 |
if not same_scheduler or not same_karras:
|
208 |
self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs)
|
209 |
if self.refiner is not None:
|
@@ -222,6 +263,6 @@ class Loader:
|
|
222 |
"text_encoder_2": self.pipe.text_encoder_2,
|
223 |
}
|
224 |
|
225 |
-
self._load_refiner(refiner, progress, **refiner_kwargs)
|
226 |
self._load_deepcache(deepcache)
|
227 |
self._load_upscaler(scale)
|
|
|
20 |
cls._instance.pipe = None
|
21 |
cls._instance.model = None
|
22 |
cls._instance.refiner = None
|
23 |
+
cls._instance.upscaler = None
|
|
|
24 |
return cls._instance
|
25 |
|
26 |
+
def _should_offload_refiner(self, model=""):
|
27 |
+
if self.refiner is None:
|
28 |
+
return False
|
29 |
+
if self.model and self.model.lower() != model.lower():
|
30 |
+
return True
|
31 |
+
return False
|
32 |
|
33 |
+
def _should_unload_refiner(self, refiner=False):
|
34 |
+
if self.refiner is None:
|
35 |
return False
|
36 |
+
if not refiner:
|
37 |
+
return True
|
38 |
+
return False
|
39 |
+
|
40 |
+
def _should_unload_upscaler(self, scale=1):
|
41 |
+
if self.upscaler is not None and self.upscaler.scale != scale:
|
42 |
return True
|
43 |
return False
|
44 |
|
|
|
50 |
return True
|
51 |
return False
|
52 |
|
53 |
+
def _should_unload_pipeline(self, model=""):
|
54 |
+
if self.pipe is None:
|
55 |
+
return False
|
56 |
+
if self.model and self.model.lower() != model.lower():
|
57 |
+
return True
|
58 |
+
return False
|
59 |
+
|
60 |
+
def _offload_refiner(self):
|
61 |
if self.refiner is not None:
|
62 |
+
self.refiner.to("cpu", silence_dtype_warnings=True)
|
63 |
+
self.refiner.vae = None
|
64 |
+
self.refiner.scheduler = None
|
65 |
+
self.refiner.tokenizer_2 = None
|
66 |
+
self.refiner.text_encoder_2 = None
|
67 |
+
|
68 |
+
def _unload_refiner(self):
|
69 |
+
# already on CPU from offloading
|
70 |
+
print("Unloading refiner")
|
71 |
|
72 |
+
def _unload_upscaler(self):
|
73 |
+
print(f"Unloading {self.upscaler.scale}x upscaler")
|
74 |
+
self.upscaler.to("cpu")
|
75 |
+
|
76 |
+
def _unload_deepcache(self):
|
77 |
+
if self.pipe.deepcache is not None:
|
78 |
+
print("Unloading DeepCache")
|
79 |
+
self.pipe.deepcache.disable()
|
80 |
+
delattr(self.pipe, "deepcache")
|
81 |
+
if self.refiner is not None:
|
82 |
+
if hasattr(self.refiner, "deepcache"):
|
83 |
+
print("Unloading DeepCache for refiner")
|
84 |
+
self.refiner.deepcache.disable()
|
85 |
+
delattr(self.refiner, "deepcache")
|
86 |
+
|
87 |
+
def _unload_pipeline(self):
|
88 |
+
print(f"Unloading {self.model}")
|
89 |
+
self.pipe.to("cpu", silence_dtype_warnings=True)
|
90 |
+
|
91 |
+
def _unload(self, model, refiner, deepcache, scale):
|
92 |
to_unload = []
|
93 |
+
if self._should_unload_deepcache(deepcache): # remove deepcache first
|
94 |
self._unload_deepcache()
|
95 |
+
|
96 |
+
if self._should_offload_refiner(model):
|
97 |
+
self._offload_refiner()
|
98 |
+
|
99 |
+
if self._should_unload_refiner(refiner):
|
100 |
+
self._unload_refiner()
|
101 |
+
to_unload.append("refiner")
|
102 |
+
|
103 |
+
if self._should_unload_upscaler(scale):
|
104 |
+
self._unload_upscaler()
|
105 |
+
to_unload.append("upscaler")
|
106 |
+
|
107 |
if self._should_unload_pipeline(model):
|
108 |
+
self._unload_pipeline()
|
109 |
to_unload.append("model")
|
110 |
to_unload.append("pipe")
|
111 |
+
|
112 |
+
self.collect()
|
|
|
113 |
for component in to_unload:
|
114 |
setattr(self, component, None)
|
115 |
+
gc.collect()
|
116 |
+
|
117 |
+
def _load_refiner(self, refiner, progress, **kwargs):
|
118 |
+
if refiner and self.refiner is None:
|
119 |
+
model = Config.REFINER_MODEL
|
120 |
+
pipeline = Config.PIPELINES["img2img"]
|
121 |
+
try:
|
122 |
+
print(f"Loading {model}")
|
123 |
+
self.refiner = pipeline.from_pretrained(model, **kwargs).to("cuda")
|
124 |
+
except Exception as e:
|
125 |
+
print(f"Error loading {model}: {e}")
|
126 |
+
self.refiner = None
|
127 |
+
return
|
128 |
+
if self.refiner is not None:
|
129 |
+
self.refiner.set_progress_bar_config(disable=progress is not None)
|
130 |
+
|
131 |
+
def _load_upscaler(self, scale=1):
|
132 |
+
if self.upscaler is None and scale > 1:
|
133 |
+
try:
|
134 |
+
print(f"Loading {scale}x upscaler")
|
135 |
+
self.upscaler = RealESRGAN(scale, device=self.pipe.device)
|
136 |
+
self.upscaler.load_weights()
|
137 |
+
except Exception as e:
|
138 |
+
print(f"Error loading {scale}x upscaler: {e}")
|
139 |
+
self.upscaler = None
|
140 |
|
141 |
def _load_deepcache(self, interval=1):
|
142 |
pipe_has_deepcache = hasattr(self.pipe, "deepcache")
|
|
|
164 |
pipeline = Config.PIPELINES[kind]
|
165 |
if self.pipe is None:
|
166 |
try:
|
167 |
+
print(f"Loading {model}")
|
168 |
self.model = model
|
169 |
if model.lower() in Config.MODEL_CHECKPOINTS.keys():
|
170 |
self.pipe = pipeline.from_single_file(
|
|
|
178 |
self.refiner.scheduler = self.pipe.scheduler
|
179 |
self.refiner.tokenizer_2 = self.pipe.tokenizer_2
|
180 |
self.refiner.text_encoder_2 = self.pipe.text_encoder_2
|
181 |
+
self.refiner.to(self.pipe.device)
|
182 |
except Exception as e:
|
183 |
print(f"Error loading {model}: {e}")
|
184 |
self.model = None
|
|
|
189 |
if self.pipe is not None:
|
190 |
self.pipe.set_progress_bar_config(disable=progress is not None)
|
191 |
|
192 |
+
def collect(self):
|
193 |
+
torch.cuda.empty_cache()
|
194 |
+
torch.cuda.ipc_collect()
|
195 |
+
torch.cuda.reset_peak_memory_stats()
|
196 |
+
torch.cuda.synchronize()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
def load(self, kind, model, scheduler, deepcache, scale, karras, refiner, progress):
|
199 |
scheduler_kwargs = {
|
|
|
226 |
"vae": AutoencoderKL.from_pretrained(Config.VAE_MODEL, torch_dtype=dtype),
|
227 |
}
|
228 |
|
229 |
+
self._unload(model, refiner, deepcache, scale)
|
230 |
self._load_pipeline(kind, model, progress, **pipe_kwargs)
|
231 |
|
232 |
# error loading model
|
|
|
242 |
# same model, different scheduler
|
243 |
if self.model.lower() == model.lower():
|
244 |
if not same_scheduler:
|
245 |
+
print(f"Switching to {scheduler}")
|
246 |
if not same_karras:
|
247 |
+
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas")
|
248 |
if not same_scheduler or not same_karras:
|
249 |
self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs)
|
250 |
if self.refiner is not None:
|
|
|
263 |
"text_encoder_2": self.pipe.text_encoder_2,
|
264 |
}
|
265 |
|
266 |
+
self._load_refiner(refiner, progress, **refiner_kwargs) # load refiner before deepcache
|
267 |
self._load_deepcache(deepcache)
|
268 |
self._load_upscaler(scale)
|
lib/upscaler.py
CHANGED
@@ -264,6 +264,10 @@ class RealESRGAN:
|
|
264 |
scale=scale,
|
265 |
)
|
266 |
|
|
|
|
|
|
|
|
|
267 |
def load_weights(self):
|
268 |
assert self.scale in [2, 4], "You can download models only with scales: 2, 4"
|
269 |
config = HF_MODELS[self.scale]
|
|
|
264 |
scale=scale,
|
265 |
)
|
266 |
|
267 |
+
def to(self, device):
|
268 |
+
self.device = device
|
269 |
+
self.model.to(device=device)
|
270 |
+
|
271 |
def load_weights(self):
|
272 |
assert self.scale in [2, 4], "You can download models only with scales: 2, 4"
|
273 |
config = HF_MODELS[self.scale]
|