import torch from DeepCache import DeepCacheSDHelper from diffusers.models import AutoencoderKL from .config import Config from .logger import Logger from .upscaler import RealESRGAN from .utils import cuda_collect, timer class Loader: def __init__(self): self.model = "" self.refiner = None self.pipeline = None self.upscaler = None self.log = Logger("Loader") def should_unload_refiner(self, use_refiner=False): return self.refiner is not None and not use_refiner def should_unload_upscaler(self, scale=1): return self.upscaler is not None and self.upscaler.scale != scale def should_unload_deepcache(self, interval=1): has_deepcache = hasattr(self.pipeline, "deepcache") if has_deepcache and interval == 1: return True if has_deepcache and self.pipeline.deepcache.params["cache_interval"] != interval: return True return False def should_unload_pipeline(self, model=""): return self.pipeline is not None and self.model != model def should_load_refiner(self, use_refiner=False): return self.refiner is None and use_refiner def should_load_upscaler(self, scale=1): return self.upscaler is None and scale > 1 def should_load_deepcache(self, interval=1): has_deepcache = hasattr(self.pipeline, "deepcache") if not has_deepcache and interval != 1: return True if has_deepcache and self.pipeline.deepcache.params["cache_interval"] != interval: return True return False def should_load_pipeline(self): return self.pipeline is None def unload(self, model, use_refiner, deepcache_interval, scale): if self.should_unload_deepcache(deepcache_interval): self.log.info("Disabling DeepCache") self.pipeline.deepcache.disable() delattr(self.pipeline, "deepcache") if self.refiner: self.refiner.deepcache.disable() delattr(self.refiner, "deepcache") if self.should_unload_refiner(use_refiner): self.log.info("Unloading refiner") self.refiner = None if self.should_unload_upscaler(scale): self.log.info("Unloading upscaler") self.upscaler = None if self.should_unload_pipeline(model): self.log.info(f"Unloading {self.model}") if self.refiner: self.refiner.vae = None self.refiner.scheduler = None self.refiner.tokenizer_2 = None self.refiner.text_encoder_2 = None self.pipeline = None self.model = None # Flush cache cuda_collect() def load_refiner(self, progress=None): model = Config.REFINER_MODEL try: with timer(f"Loading {model}", logger=self.log.info): refiner_kwargs = { "variant": "fp16", "torch_dtype": self.pipeline.dtype, "add_watermarker": False, "requires_aesthetics_score": True, "force_zeros_for_empty_prompt": False, "vae": self.pipeline.vae, "scheduler": self.pipeline.scheduler, "tokenizer_2": self.pipeline.tokenizer_2, "text_encoder_2": self.pipeline.text_encoder_2, } Pipeline = Config.PIPELINES["img2img"] self.refiner = Pipeline.from_pretrained(model, **refiner_kwargs).to("cuda") except Exception as e: self.log.error(f"Error loading {model}: {e}") self.refiner = None return if self.refiner is not None: self.refiner.set_progress_bar_config(disable=progress is not None) def load_upscaler(self, scale=1): if self.should_load_upscaler(scale): try: with timer(f"Loading {scale}x upscaler", logger=self.log.info): self.upscaler = RealESRGAN(scale, device=self.pipeline.device) self.upscaler.load_weights() except Exception as e: self.log.error(f"Error loading {scale}x upscaler: {e}") self.upscaler = None def load_deepcache(self, interval=1): if self.should_load_deepcache(interval): self.log.info("Enabling DeepCache") self.pipeline.deepcache = DeepCacheSDHelper(pipe=self.pipeline) self.pipeline.deepcache.set_params(cache_interval=interval) self.pipeline.deepcache.enable() if self.refiner: self.refiner.deepcache = DeepCacheSDHelper(pipe=self.refiner) self.refiner.deepcache.set_params(cache_interval=interval) self.refiner.deepcache.enable() def load(self, kind, model, scheduler, deepcache_interval, scale, use_karras, use_refiner, progress=None): scheduler_kwargs = { "beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear", "timestep_spacing": "leading", "steps_offset": 1, } if scheduler not in ["DDIM", "Euler a"]: scheduler_kwargs["use_karras_sigmas"] = use_karras if scheduler == "DDIM": scheduler_kwargs["clip_sample"] = False scheduler_kwargs["set_alpha_to_one"] = False if model not in Config.SINGLE_FILE_MODELS: variant = "fp16" else: variant = None dtype = torch.float16 pipeline_kwargs = { "variant": variant, "torch_dtype": dtype, "add_watermarker": False, "scheduler": Config.SCHEDULERS[scheduler](**scheduler_kwargs), "vae": AutoencoderKL.from_pretrained(Config.VAE_MODEL, torch_dtype=dtype), } self.unload(model, use_refiner, deepcache_interval, scale) Pipeline = Config.PIPELINES[kind] Scheduler = Config.SCHEDULERS[scheduler] try: with timer(f"Loading {model}", logger=self.log.info): self.model = model if model in Config.SINGLE_FILE_MODELS: checkpoint = Config.HF_REPOS[model][0] self.pipeline = Pipeline.from_single_file( f"https://huggingface.co/{model}/{checkpoint}", **pipeline_kwargs, ).to("cuda") else: self.pipeline = Pipeline.from_pretrained(model, **pipeline_kwargs).to("cuda") except Exception as e: self.log.error(f"Error loading {model}: {e}") self.model = None self.pipeline = None return if not isinstance(self.pipeline, Pipeline): self.pipeline = Pipeline.from_pipe(self.pipeline).to("cuda") if self.pipeline is not None: self.pipeline.set_progress_bar_config(disable=progress is not None) # Check and update scheduler if necessary same_scheduler = isinstance(self.pipeline.scheduler, Scheduler) same_karras = ( not hasattr(self.pipeline.scheduler.config, "use_karras_sigmas") or self.pipeline.scheduler.config.use_karras_sigmas == use_karras ) if self.model == model: if not same_scheduler: self.log.info(f"Enabling {scheduler}") if not same_karras: self.log.info(f"{'Enabling' if use_karras else 'Disabling'} Karras sigmas") if not same_scheduler or not same_karras: self.pipeline.scheduler = Scheduler(**scheduler_kwargs) if self.refiner is not None: self.refiner.scheduler = self.pipeline.scheduler if self.should_load_refiner(use_refiner): self.load_refiner(progress) if self.should_load_deepcache(deepcache_interval): self.load_deepcache(deepcache_interval) if self.should_load_upscaler(scale): self.load_upscaler(scale)