File size: 4,448 Bytes
ba33983
 
7b8e908
ba33983
 
 
9edebae
ba33983
 
 
1a688bc
ba33983
23f4f95
1a688bc
23f4f95
ba33983
23f4f95
 
 
c348e53
23f4f95
c348e53
23f4f95
c348e53
579e8d0
 
9edebae
579e8d0
ba33983
 
1a688bc
 
9edebae
 
 
 
ba33983
 
9edebae
 
ba33983
60849d7
 
61ad3d2
 
 
 
 
 
9edebae
60849d7
9edebae
60849d7
ba33983
 
 
 
9edebae
7b8e908
 
ba33983
 
 
23f4f95
 
9edebae
23f4f95
 
 
7b8e908
23f4f95
ba33983
 
61ad3d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
## Usage

Enter a prompt and click `Generate`. Roll the `🎲` for a random prompt.

### Prompting

Positive and negative prompts are embedded by [Compel](https://github.com/damian0815/compel) for weighting. See [syntax features](https://github.com/damian0815/compel/blob/main/doc/syntax.md) to learn more and read [Civitai](https://civitai.com)'s guide on [prompting](https://education.civitai.com/civitais-prompt-crafting-guide-part-1-basics/) for best practices.

#### Arrays

Arrays allow you to generate different images from a single prompt. For example, `[[cat,corgi]]` will expand into 2 separate prompts. Make sure `Images` is set accordingly (e.g., 2). Only works for the positive prompt. Inspired by [Fooocus](https://github.com/lllyasviel/Fooocus/pull/1503).

### Embeddings

Select multiple negative [textual inversion](https://huggingface.co/docs/diffusers/en/using-diffusers/textual_inversion_inference) embeddings. Fast Negative and Bad Dream can be used standalone or together; Unrealistic Dream should be combined with one of the others:

* [`<fast_negative>`](https://civitai.com/models/71961/fast-negative-embedding-fastnegativev2): all-purpose (default)
* [`<bad_dream>`](https://civitai.com/models/72437?modelVersionId=77169): DreamShaper-style
* [`<unrealistic_dream>`](https://civitai.com/models/72437?modelVersionId=77173): realistic add-on

### Styles

Styles are prompt templates from twri's [sdxl_prompt_styler](https://github.com/twri/sdxl_prompt_styler) Comfy node. Start with a subject like "cat", pick a style, and iterate from there.

### Scale

Rescale up to 4x using [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) from [ai-forever](ai-forever/Real-ESRGAN).

### Models

Each model checkpoint has a different aesthetic:

* [cyberdelia/CyberRealistic_v5](https://huggingface.co/cyberdelia/CyberRealistic): photorealistic
* [Lykon/dreamshaper-8](https://huggingface.co/Lykon/dreamshaper-8): general purpose (default)
* [fluently/Fluently-v4](https://huggingface.co/fluently/Fluently-v4): general purpose
* [Linaqruf/anything-v3-1](https://huggingface.co/Linaqruf/anything-v3-1): anime
* [prompthero/openjourney-v4](https://huggingface.co/prompthero/openjourney-v4): Midjourney-like
* [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5): base
* [SG161222/Realistic_Vision_v5.1](https://huggingface.co/SG161222/Realistic_Vision_V5.1_noVAE): photorealistic
* [XpucT/Deliberate_v6](https://huggingface.co/XpucT/Deliberate): general purpose

### Image-to-Image

The `🖼️ Image` tab enables the image-to-image and IP-Adapter pipelines. Either use the image input or select a generation from the gallery. To disable, simply clear the image input (the `x` overlay button).

Denoising strength is essentially how much the generation will differ from the input image. A value of `0` will be identical to the original, while `1` will be a completely new image. You may want to also increase the number of inference steps. Only applies to the image-to-image input.

### IP-Adapter

In an image-to-image pipeline, the input image is used as the initial latent. With [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter), the input image is processed by a separate image encoder and the encoded features are used as conditioning along with the text prompt.

For capturing faces, enable `IP-Adapter Face` to use the full-face model. You should use an input image that is mostly a face and it should be high quality. You can generate fake portraits with Realistic Vision to experiment. Note that you'll never get true identity preservation without an advanced pipeline like [InstantID](https://github.com/instantX-research/InstantID), which combines many techniques.

### Advanced

#### DeepCache

[DeepCache](https://github.com/horseee/DeepCache) caches lower UNet layers and reuses them every `Interval` steps. Trade quality for speed:
* `1`: no caching (default)
* `2`: more quality
* `3`: balanced
* `4`: more speed

#### FreeU

[FreeU](https://github.com/ChenyangSi/FreeU) re-weights the contributions sourced from the UNet’s skip connections and backbone feature maps. Can sometimes improve image quality.

#### Clip Skip

When enabled, the last CLIP layer is skipped. Can sometimes improve image quality.

#### Tiny VAE

Enable [madebyollin/taesd](https://github.com/madebyollin/taesd) for near-instant latent decoding with a minor loss in detail. Useful for development.