Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,043 Bytes
98afd85 ba33983 f24703f ba33983 98afd85 ba33983 edead93 f70898c edead93 ba33983 98afd85 ba33983 f70898c edead93 f70898c 98afd85 f70898c 98afd85 f70898c ba33983 98afd85 1a688bc 6360e64 ba33983 7e65847 6360e64 f70898c c348e53 98afd85 c348e53 6360e64 edead93 f70898c c348e53 98afd85 7e65847 98afd85 579e8d0 6360e64 98afd85 60849d7 98afd85 61ad3d2 9edebae 60849d7 9edebae 60849d7 98afd85 ba33983 98afd85 ba33983 9edebae 7b8e908 ba33983 98afd85 23f4f95 9edebae 23f4f95 98afd85 23f4f95 7b8e908 23f4f95 98afd85 ba33983 61ad3d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
# Diffusion ZERO
TL;DR: Enter a prompt or roll the `🎲` and press `Generate`.
## Prompting
Positive and negative prompts are embedded by [Compel](https://github.com/damian0815/compel) for weighting. See [syntax features](https://github.com/damian0815/compel/blob/main/doc/syntax.md) to learn more.
Use `+` or `-` to increase the weight of a token. The weight grows exponentially when chained. For example, `blue+` means 1.1x more attention is given to `blue`, while `blue++` means 1.1^2 more, and so on. The same applies to `-`.
For groups of tokens, wrap them in parentheses and multiply by a float between 0 and 2. For example, `a (birthday cake)1.3 on a table` will increase the weight of both `birthday` and `cake` by 1.3x. This also means the entire scene will be more birthday-like, not just the cake. To counteract this, you can use `-` inside the parentheses on specific tokens, e.g., `a (birthday-- cake)1.3`, to reduce the birthday aspect.
This is the same syntax used in [InvokeAI](https://invoke-ai.github.io/InvokeAI/features/PROMPTS/) and it differs from AUTOMATIC1111:
| Compel | AUTOMATIC1111 |
| ----------- | ------------- |
| `blue++` | `((blue))` |
| `blue--` | `[[blue]]` |
| `(blue)1.2` | `(blue:1.2)` |
| `(blue)0.8` | `(blue:0.8)` |
### Arrays
Arrays allow you to generate multiple different images from a single prompt. For example, `an adult [[blonde,brunette]] [[man,woman]]` will expand into **4** different prompts. This implementation was inspired by [Fooocus](https://github.com/lllyasviel/Fooocus/pull/1503).
> NB: Make sure to set `Images` to the number of images you want to generate. Otherwise, only the first prompt will be used.
## Models
Each model checkpoint has a different aesthetic:
* [Comfy-Org/stable-diffusion-v1-5](https://huggingface.co/Comfy-Org/stable-diffusion-v1-5-archive): base
* [cyberdelia/CyberRealistic_V5](https://huggingface.co/cyberdelia/CyberRealistic): realistic
* [Lykon/dreamshaper-8](https://huggingface.co/Lykon/dreamshaper-8): general purpose (default)
* [fluently/Fluently-v4](https://huggingface.co/fluently/Fluently-v4): general purpose stylized
* [Linaqruf/anything-v3-1](https://huggingface.co/Linaqruf/anything-v3-1): anime
* [prompthero/openjourney-v4](https://huggingface.co/prompthero/openjourney-v4): Midjourney art style
* [SG161222/Realistic_Vision_V5](https://huggingface.co/SG161222/Realistic_Vision_V5.1_noVAE): realistic
* [XpucT/Deliberate_v6](https://huggingface.co/XpucT/Deliberate): general purpose stylized
## LoRA
Apply up to 2 LoRA (low-rank adaptation) adapters with adjustable strength:
* [Perfection Style](https://civitai.com/models/411088?modelVersionId=486099): attempts to improve aesthetics, use high strength
* [Detailed Style](https://civitai.com/models/421162?modelVersionId=486110): attempts to improve details, use low strength
> NB: The trigger words are automatically appended to the positive prompt for you.
## Embeddings
Select one or more [textual inversion](https://huggingface.co/docs/diffusers/en/using-diffusers/textual_inversion_inference) embeddings:
* [`fast_negative`](https://civitai.com/models/71961?modelVersionId=94057): all-purpose (default, **recommended**)
* [`cyberrealistic_negative`](https://civitai.com/models/77976?modelVersionId=82745): realistic add-on (for CyberRealistic)
* [`unrealistic_dream`](https://civitai.com/models/72437?modelVersionId=77173): realistic add-on (for RealisticVision)
> NB: The trigger token is automatically appended to the negative prompt for you.
## Styles
[Styles](https://huggingface.co/spaces/adamelliotfields/diffusion/blob/main/data/styles.json) are prompt templates that wrap your positive and negative prompts. They were originally derived from the [twri/sdxl_prompt_styler](https://github.com/twri/sdxl_prompt_styler) Comfy node, but have since been entirely rewritten.
Start by framing a simple subject like `portrait of a young adult woman` or `landscape of a mountain range` and experiment.
### Anime
The `Anime: *` styles work the best with Dreamshaper. When using the anime-specific Anything model, you should use the `Anime: Anything` style with the following settings:
* Scheduler: `DEIS 2M` or `DPM++ 2M`
* Guidance: `10`
* Steps: `50`
You subject should be a few simple tokens like `girl, brunette, blue eyes, armor, nebula, celestial`. Experiment with `Clip Skip` and `Karras`. Finish with the `Perfection Style` LoRA on a moderate setting and upscale.
## Scale
Rescale up to 4x using [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) with weights from [ai-forever](ai-forever/Real-ESRGAN). Necessary for high-resolution images.
## Image-to-Image
The `🖼️ Image` tab enables the image-to-image and IP-Adapter pipelines.
### Strength
Denoising strength is essentially how much the generation will differ from the input image. A value of `0` will be identical to the original, while `1` will be a completely new image. You may want to also increase the number of inference steps. Only applies to the image-to-image input.
### IP-Adapter
In an image-to-image pipeline, the input image is used as the initial latent. With [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter), the input image is processed by a separate image encoder and the encoded features are used as conditioning along with the text prompt.
For capturing faces, enable `IP-Adapter Face` to use the full-face model. You should use an input image that is mostly a face and it should be high quality. You can generate fake portraits with Realistic Vision to experiment. Note that you'll never get true identity preservation without an advanced pipeline like [InstantID](https://github.com/instantX-research/InstantID), which combines many techniques.
## ControlNet
The `🎮 Control` tab enables the [ControlNet](https://github.com/lllyasviel/ControlNet) pipelines. Read the [Diffusers docs](https://huggingface.co/docs/diffusers/using-diffusers/controlnet) to learn more.
### Annotators
In ControlNet, the input image is a feature map produced by an _annotator_. These are computer vision models used for tasks like edge detection and pose estimation. ControlNet models are trained to understand these feature maps.
> NB: Control images will be automatically resized to the nearest multiple of 64 (e.g., 513 -> 512).
## Advanced
### DeepCache
[DeepCache](https://github.com/horseee/DeepCache) caches lower UNet layers and reuses them every `Interval` steps. Trade quality for speed:
* `1`: no caching (default)
* `2`: more quality
* `3`: balanced
* `4`: more speed
### FreeU
[FreeU](https://github.com/ChenyangSi/FreeU) re-weights the contributions sourced from the UNet’s skip connections and backbone feature maps. Can sometimes improve image quality.
### Clip Skip
When enabled, the last CLIP layer is skipped. Can sometimes improve image quality.
### Tiny VAE
Enable [madebyollin/taesd](https://github.com/madebyollin/taesd) for near-instant latent decoding with a minor loss in detail. Useful for development.
|