Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
from threading import Lock | |
import torch | |
from DeepCache import DeepCacheSDHelper | |
from diffusers import ControlNetModel | |
from diffusers.models.attention_processor import AttnProcessor2_0, IPAdapterAttnProcessor2_0 | |
from .config import Config | |
from .logger import Logger | |
from .upscaler import RealESRGAN | |
from .utils import clear_cuda_cache, safe_progress, timer | |
class Loader: | |
_instance = None | |
_lock = Lock() | |
def __new__(cls): | |
with cls._lock: | |
if cls._instance is None: | |
cls._instance = super().__new__(cls) | |
cls._instance.pipe = None | |
cls._instance.model = None | |
cls._instance.upscaler = None | |
cls._instance.controlnet = None | |
cls._instance.ip_adapter = None | |
cls._instance.log = Logger("Loader") | |
return cls._instance | |
def _should_unload_upscaler(self, scale=1): | |
if self.upscaler is not None and self.upscaler.scale != scale: | |
return True | |
return False | |
def _should_unload_deepcache(self, interval=1): | |
has_deepcache = hasattr(self.pipe, "deepcache") | |
if has_deepcache and interval == 1: | |
return True | |
if has_deepcache and self.pipe.deepcache.params["cache_interval"] != interval: | |
return True | |
return False | |
def _should_unload_ip_adapter(self, model="", ip_adapter=""): | |
# unload if model changed | |
if self.model and self.model.lower() != model.lower(): | |
return True | |
if self.ip_adapter and not ip_adapter: | |
return True | |
return False | |
def _should_unload_controlnet(self, kind="", controlnet=""): | |
if self.controlnet is None: | |
return False | |
if self.controlnet.lower() != controlnet.lower(): | |
return True | |
if not kind.startswith("controlnet_"): | |
return True | |
return False | |
def _should_unload_pipeline(self, kind="", model="", controlnet=""): | |
if self.pipe is None: | |
return False | |
if self.model.lower() != model.lower(): | |
return True | |
if kind == "txt2img" and not isinstance(self.pipe, Config.PIPELINES["txt2img"]): | |
return True | |
if kind == "img2img" and not isinstance(self.pipe, Config.PIPELINES["img2img"]): | |
return True | |
if kind == "controlnet_txt2img" and not isinstance( | |
self.pipe, | |
Config.PIPELINES["controlnet_txt2img"], | |
): | |
return True | |
if kind == "controlnet_img2img" and not isinstance( | |
self.pipe, | |
Config.PIPELINES["controlnet_img2img"], | |
): | |
return True | |
if self._should_unload_controlnet(kind, controlnet): | |
return True | |
return False | |
def _unload_upscaler(self): | |
if self.upscaler is not None: | |
with timer(f"Unloading {self.upscaler.scale}x upscaler", logger=self.log.info): | |
self.upscaler.to("cpu") | |
def _unload_deepcache(self): | |
if self.pipe.deepcache is not None: | |
self.log.info("Disabling DeepCache") | |
self.pipe.deepcache.disable() | |
delattr(self.pipe, "deepcache") | |
# Copied from https://github.com/huggingface/diffusers/blob/v0.28.0/src/diffusers/loaders/ip_adapter.py#L300 | |
def _unload_ip_adapter(self): | |
if self.ip_adapter is not None: | |
with timer("Unloading IP-Adapter", logger=self.log.info): | |
if not isinstance(self.pipe, Config.PIPELINES["img2img"]): | |
self.pipe.image_encoder = None | |
self.pipe.register_to_config(image_encoder=[None, None]) | |
self.pipe.feature_extractor = None | |
self.pipe.unet.encoder_hid_proj = None | |
self.pipe.unet.config.encoder_hid_dim_type = None | |
self.pipe.register_to_config(feature_extractor=[None, None]) | |
attn_procs = {} | |
for name, value in self.pipe.unet.attn_processors.items(): | |
attn_processor_class = AttnProcessor2_0() # raises if not torch 2 | |
attn_procs[name] = ( | |
attn_processor_class | |
if isinstance(value, IPAdapterAttnProcessor2_0) | |
else value.__class__() | |
) | |
self.pipe.unet.set_attn_processor(attn_procs) | |
def _unload_pipeline(self): | |
if self.pipe is not None: | |
with timer(f"Unloading {self.model}", logger=self.log.info): | |
self.pipe.to("cpu") | |
def _unload( | |
self, | |
kind="", | |
model="", | |
controlnet="", | |
ip_adapter="", | |
deepcache=1, | |
scale=1, | |
): | |
to_unload = [] | |
if self._should_unload_deepcache(deepcache): # remove deepcache first | |
self._unload_deepcache() | |
if self._should_unload_upscaler(scale): | |
self._unload_upscaler() | |
to_unload.append("upscaler") | |
if self._should_unload_ip_adapter(model, ip_adapter): | |
self._unload_ip_adapter() | |
to_unload.append("ip_adapter") | |
if self._should_unload_controlnet(kind, controlnet): | |
to_unload.append("controlnet") | |
if self._should_unload_pipeline(kind, model, controlnet): | |
self._unload_pipeline() | |
to_unload.append("model") | |
to_unload.append("pipe") | |
# Flush cache and run garbage collector | |
clear_cuda_cache() | |
for component in to_unload: | |
setattr(self, component, None) | |
gc.collect() | |
def _should_load_upscaler(self, scale=1): | |
if self.upscaler is None and scale > 1: | |
return True | |
return False | |
def _should_load_deepcache(self, interval=1): | |
has_deepcache = hasattr(self.pipe, "deepcache") | |
if not has_deepcache and interval != 1: | |
return True | |
if has_deepcache and self.pipe.deepcache.params["cache_interval"] != interval: | |
return True | |
return False | |
def _should_load_ip_adapter(self, ip_adapter=""): | |
if not self.ip_adapter and ip_adapter: | |
return True | |
return False | |
def _should_load_pipeline(self): | |
if self.pipe is None: | |
return True | |
return False | |
def _load_upscaler(self, scale=1): | |
if self._should_load_upscaler(scale): | |
try: | |
msg = f"Loading {scale}x upscaler" | |
with timer(msg, logger=self.log.info): | |
self.upscaler = RealESRGAN(scale, device=self.pipe.device) | |
self.upscaler.load_weights() | |
except Exception as e: | |
self.log.error(f"Error loading {scale}x upscaler: {e}") | |
self.upscaler = None | |
def _load_deepcache(self, interval=1): | |
if self._should_load_deepcache(interval): | |
self.log.info("Enabling DeepCache") | |
self.pipe.deepcache = DeepCacheSDHelper(self.pipe) | |
self.pipe.deepcache.set_params(cache_interval=interval) | |
self.pipe.deepcache.enable() | |
def _load_ip_adapter(self, ip_adapter=""): | |
if self._should_load_ip_adapter(ip_adapter): | |
msg = "Loading IP-Adapter" | |
with timer(msg, logger=self.log.info): | |
self.pipe.load_ip_adapter( | |
"h94/IP-Adapter", | |
subfolder="models", | |
weight_name=f"ip-adapter-{ip_adapter}_sd15.safetensors", | |
) | |
# 50% works the best | |
self.pipe.set_ip_adapter_scale(0.5) | |
self.ip_adapter = ip_adapter | |
def _load_pipeline( | |
self, | |
kind, | |
model, | |
progress, | |
**kwargs, | |
): | |
pipeline = Config.PIPELINES[kind] | |
if self._should_load_pipeline(): | |
try: | |
with timer(f"Loading {model} ({kind})", logger=self.log.info): | |
self.model = model | |
if model.lower() in Config.MODEL_CHECKPOINTS.keys(): | |
self.pipe = pipeline.from_single_file( | |
f"https://huggingface.co/{model}/{Config.MODEL_CHECKPOINTS[model.lower()]}", | |
progress, | |
**kwargs, | |
).to("cuda") | |
else: | |
self.pipe = pipeline.from_pretrained(model, progress, **kwargs).to("cuda") | |
except Exception as e: | |
self.log.error(f"Error loading {model}: {e}") | |
self.model = None | |
self.pipe = None | |
return | |
if not isinstance(self.pipe, pipeline): | |
self.pipe = pipeline.from_pipe(self.pipe).to("cuda") | |
if self.pipe is not None: | |
self.pipe.set_progress_bar_config(disable=progress is not None) | |
def load( | |
self, | |
kind, | |
ip_adapter, | |
model, | |
scheduler, | |
annotator, | |
deepcache, | |
scale, | |
karras, | |
progress, | |
): | |
scheduler_kwargs = { | |
"beta_schedule": "scaled_linear", | |
"timestep_spacing": "leading", | |
"beta_start": 0.00085, | |
"beta_end": 0.012, | |
"steps_offset": 1, | |
} | |
if scheduler not in ["DDIM", "Euler a", "PNDM"]: | |
scheduler_kwargs["use_karras_sigmas"] = karras | |
# https://github.com/huggingface/diffusers/blob/8a3f0c1/scripts/convert_original_stable_diffusion_to_diffusers.py#L939 | |
if scheduler == "DDIM": | |
scheduler_kwargs["clip_sample"] = False | |
scheduler_kwargs["set_alpha_to_one"] = False | |
pipe_kwargs = { | |
"safety_checker": None, | |
"requires_safety_checker": False, | |
"scheduler": Config.SCHEDULERS[scheduler](**scheduler_kwargs), | |
} | |
# diffusers fp16 variant | |
if model.lower() not in Config.MODEL_CHECKPOINTS.keys(): | |
pipe_kwargs["variant"] = "fp16" | |
else: | |
pipe_kwargs["variant"] = None | |
# converts to fp32 by default | |
pipe_kwargs["torch_dtype"] = torch.float16 | |
# config maps the repo to the ID: canny -> lllyasviel/control_sd15_canny | |
if kind.startswith("controlnet_"): | |
pipe_kwargs["controlnet"] = ControlNetModel.from_pretrained( | |
Config.ANNOTATORS[annotator], | |
torch_dtype=torch.float16, | |
variant="fp16", | |
) | |
self.controlnet = annotator | |
self._unload(kind, model, annotator, ip_adapter, deepcache, scale) | |
self._load_pipeline(kind, model, progress, **pipe_kwargs) | |
# error loading model | |
if self.pipe is None: | |
return | |
same_scheduler = isinstance(self.pipe.scheduler, Config.SCHEDULERS[scheduler]) | |
same_karras = ( | |
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas") | |
or self.pipe.scheduler.config.use_karras_sigmas == karras | |
) | |
# same model, different scheduler | |
if self.model.lower() == model.lower(): | |
if not same_scheduler: | |
self.log.info(f"Enabling {scheduler} scheduler") | |
if not same_karras: | |
self.log.info(f"{'Enabling' if karras else 'Disabling'} Karras sigmas") | |
if not same_scheduler or not same_karras: | |
self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs) | |
CURRENT_STEP = 1 | |
TOTAL_STEPS = sum( | |
[ | |
self._should_load_deepcache(deepcache), | |
self._should_load_ip_adapter(ip_adapter), | |
self._should_load_upscaler(scale), | |
] | |
) | |
desc = "Configuring pipeline" | |
if self._should_load_deepcache(deepcache): | |
self._load_deepcache(deepcache) | |
safe_progress(progress, CURRENT_STEP, TOTAL_STEPS, desc) | |
CURRENT_STEP += 1 | |
if self._should_load_ip_adapter(ip_adapter): | |
self._load_ip_adapter(ip_adapter) | |
safe_progress(progress, CURRENT_STEP, TOTAL_STEPS, desc) | |
CURRENT_STEP += 1 | |
if self._should_load_upscaler(scale): | |
self._load_upscaler(scale) | |
safe_progress(progress, CURRENT_STEP, TOTAL_STEPS, desc) | |