diffusion / lib /utils.py
adamelliotfields's picture
Clean up
ab11d6f verified
raw
history blame
3.77 kB
import functools
import json
import os
import time
from contextlib import contextmanager
from typing import Tuple, TypeVar
import numpy as np
import torch
from anyio import Semaphore
from diffusers.utils import logging as diffusers_logging
from PIL import Image
from transformers import logging as transformers_logging
from typing_extensions import ParamSpec
from .annotators import CannyAnnotator
T = TypeVar("T")
P = ParamSpec("P")
MAX_CONCURRENT_THREADS = 1
MAX_THREADS_GUARD = Semaphore(MAX_CONCURRENT_THREADS)
@contextmanager
def timer(message="Operation", logger=print):
start = time.perf_counter()
logger(message)
try:
yield
finally:
end = time.perf_counter()
logger(f"{message} took {end - start:.2f}s")
@functools.lru_cache()
def read_json(path: str) -> dict:
with open(path, "r", encoding="utf-8") as file:
data = json.load(file)
return json.dumps(data, indent=4)
@functools.lru_cache()
def read_file(path: str) -> str:
with open(path, "r", encoding="utf-8") as file:
return file.read()
def disable_progress_bars():
transformers_logging.disable_progress_bar()
diffusers_logging.disable_progress_bar()
def enable_progress_bars():
# warns if `HF_HUB_DISABLE_PROGRESS_BARS` env var is not None
transformers_logging.enable_progress_bar()
diffusers_logging.enable_progress_bar()
def cuda_collect():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
def image_to_pil(image: Image.Image):
"""Converts various image inputs to RGB PIL Image."""
if isinstance(image, str) and os.path.isfile(image):
image = Image.open(image)
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
if isinstance(image, Image.Image):
return image.convert("RGB")
raise ValueError("Invalid image input")
def get_valid_image_size(
width: int,
height: int,
step=64,
min_size=512,
max_size=4096,
):
"""Get new image dimensions while preserving aspect ratio."""
def round_down(x):
return int((x // step) * step)
def clamp(x):
return max(min_size, min(x, max_size))
aspect_ratio = width / height
# try width first
if width > height:
new_width = round_down(clamp(width))
new_height = round_down(new_width / aspect_ratio)
else:
new_height = round_down(clamp(height))
new_width = round_down(new_height * aspect_ratio)
# if new dimensions are out of bounds, try height
if not min_size <= new_width <= max_size:
new_width = round_down(clamp(width))
new_height = round_down(new_width / aspect_ratio)
if not min_size <= new_height <= max_size:
new_height = round_down(clamp(height))
new_width = round_down(new_height * aspect_ratio)
return (new_width, new_height)
def resize_image(
image: Image.Image,
size: Tuple[int, int] = None,
resampling: Image.Resampling = None,
):
"""Resize image with proper interpolation and dimension constraints."""
image = image_to_pil(image)
if size is None:
size = get_valid_image_size(*image.size)
if resampling is None:
resampling = Image.Resampling.LANCZOS
return image.resize(size, resampling)
def annotate_image(image: Image.Image, annotator="canny"):
"""Get the feature map of an image using the specified annotator."""
size = get_valid_image_size(*image.size)
image = resize_image(image, size)
if annotator.lower() == "canny":
canny = CannyAnnotator()
return canny(image, size)
raise ValueError(f"Invalid annotator: {annotator}")