diffusion / app.py
adamelliotfields's picture
Fix config
9ae9087 verified
raw
history blame
11 kB
import argparse
import json
import gradio as gr
import config as cfg
from generate import generate
# the CSS `content` attribute expects a string so we need to wrap the number in quotes
random_seed_js = """
() => {
const n = Math.floor(Math.random() * Number.MAX_SAFE_INTEGER);
const button = document.getElementById("random");
button.style.setProperty("--seed", `"${n}"`);
return n;
}
"""
seed_js = """
(seed) => {
const button = document.getElementById("random");
button.style.setProperty("--seed", `"${seed}"`);
return seed;
}
"""
def read_file(path: str) -> str:
with open(path, "r", encoding="utf-8") as file:
return file.read()
def handle_generate(*args):
if len(args) > 0:
prompt = args[0]
else:
prompt = None
if prompt is None or prompt.strip() == "":
raise gr.Error("You must enter a prompt")
try:
images = generate(*args, log=gr.Info, Error=gr.Error)
except RuntimeError:
raise gr.Error("RuntimeError: Please try again")
return images
with open("./styles/twri.json", "r") as f:
styles = json.load(f)
with gr.Blocks(
head=read_file("./partials/head.html"),
css="./app.css",
js="./app.js",
theme=gr.themes.Default(
# colors
neutral_hue=gr.themes.colors.gray,
primary_hue=gr.themes.colors.orange,
secondary_hue=gr.themes.colors.blue,
# sizing
text_size=gr.themes.sizes.text_md,
radius_size=gr.themes.sizes.radius_sm,
spacing_size=gr.themes.sizes.spacing_md,
# fonts
font=[gr.themes.GoogleFont("Inter"), *cfg.SANS_FONTS],
font_mono=[gr.themes.GoogleFont("Ubuntu Mono"), *cfg.MONO_FONTS],
).set(
layout_gap="8px",
block_shadow="0 0 #0000",
block_shadow_dark="0 0 #0000",
block_background_fill=gr.themes.colors.gray.c50,
block_background_fill_dark=gr.themes.colors.gray.c900,
),
) as demo:
gr.HTML(read_file("./partials/intro.html"))
with gr.Accordion(
elem_classes=["accordion"],
elem_id="menu",
label="Open menu",
open=False,
):
with gr.Tabs():
with gr.TabItem("⚙️ Settings"):
with gr.Group():
negative_prompt = gr.Textbox(
value=cfg.NEGATIVE_PROMPT,
label="Negative Prompt",
placeholder="ugly, bad",
lines=2,
)
model = gr.Dropdown(
value=cfg.MODEL,
filterable=False,
label="Model",
choices=cfg.MODELS,
)
with gr.Row():
style = gr.Dropdown(
value=cfg.STYLE,
label="Style",
scale=1,
choices=["None"] + [f"{style['name']}" for style in styles],
)
scheduler = gr.Dropdown(
value=cfg.SCHEDULER,
elem_id="scheduler",
label="Scheduler",
filterable=False,
min_width=200,
scale=1,
choices=cfg.SCHEDULERS,
)
with gr.Row():
guidance_scale = gr.Slider(
value=cfg.GUIDANCE_SCALE,
label="Guidance Scale",
minimum=1.0,
maximum=15.0,
scale=1,
step=0.1,
)
inference_steps = gr.Slider(
value=cfg.INFERENCE_STEPS,
label="Inference Steps",
minimum=1,
maximum=50,
scale=1,
step=1,
)
seed = gr.Number(
value=cfg.SEED,
label="Seed",
minimum=-1,
maximum=(2**64) - 1,
scale=1,
)
with gr.Row():
width = gr.Slider(
value=cfg.WIDTH,
label="Width",
minimum=256,
maximum=1024,
step=32,
scale=1,
)
height = gr.Slider(
value=cfg.HEIGHT,
label="Height",
minimum=256,
maximum=1024,
step=32,
scale=1,
)
num_images = gr.Dropdown(
choices=list(range(1, 5)),
value=cfg.NUM_IMAGES,
filterable=False,
label="Images",
scale=1,
)
with gr.Row():
use_karras = gr.Checkbox(
elem_classes=["checkbox"],
label="Karras σ",
value=True,
scale=1,
)
increment_seed = gr.Checkbox(
elem_classes=["checkbox"],
label="Autoincrement",
value=True,
scale=3,
)
with gr.TabItem("🛠️ Advanced"):
with gr.Group():
with gr.Row():
deepcache_interval = gr.Slider(
value=cfg.DEEPCACHE_INTERVAL,
label="DeepCache Interval",
minimum=1,
maximum=4,
step=1,
)
tgate_step = gr.Slider(
maximum=cfg.INFERENCE_STEPS,
value=cfg.TGATE_STEP,
label="T-GATE Step",
minimum=0,
step=1,
)
with gr.Row():
file_format = gr.Dropdown(
choices=["png", "jpeg", "webp"],
label="File Format",
filterable=False,
value="png",
)
tome_ratio = gr.Slider(
value=cfg.TOME_RATIO,
label="ToMe Ratio",
minimum=0.0,
maximum=0.5,
step=0.01,
)
with gr.Row():
use_taesd = gr.Checkbox(
elem_classes=["checkbox"],
label="Tiny VAE",
value=False,
scale=1,
)
use_clip_skip = gr.Checkbox(
elem_classes=["checkbox"],
label="Clip skip",
value=False,
scale=1,
)
truncate_prompts = gr.Checkbox(
elem_classes=["checkbox"],
label="Truncate prompts",
value=False,
scale=3,
)
with gr.TabItem("ℹ️ Usage"):
gr.Markdown(read_file("usage.md"), elem_classes=["markdown"])
with gr.Group():
output_images = gr.Gallery(
elem_classes=["gallery"],
show_share_button=False,
interactive=False,
show_label=False,
object_fit="cover",
label="Output",
format="png",
columns=2,
)
prompt = gr.Textbox(
placeholder="corgi, at the beach, cute, 8k",
show_label=False,
label="Prompt",
value=None,
lines=2,
)
with gr.Row():
generate_btn = gr.Button("Generate", variant="primary", scale=6, elem_classes=[])
random_btn = gr.Button(
elem_classes=["icon-button"],
variant="secondary",
elem_id="random",
min_width=0,
value="🎲",
scale=1,
)
clear_btn = gr.ClearButton(
elem_classes=["icon-button"],
components=[output_images],
variant="secondary",
elem_id="clear",
min_width=0,
value="🗑️",
scale=1,
)
# update the seed using JavaScript
random_btn.click(None, outputs=[seed], js=random_seed_js)
seed.change(
None,
inputs=[seed],
outputs=[],
js=seed_js,
)
file_format.change(
lambda f: gr.Gallery(format=f),
inputs=[file_format],
outputs=[output_images],
)
inference_steps.change(
lambda max, step: gr.Slider(maximum=max, value=min(max, step)),
inputs=[inference_steps, tgate_step],
outputs=[tgate_step],
)
gr.on(
triggers=[generate_btn.click, prompt.submit],
fn=handle_generate,
api_name="api",
concurrency_limit=5,
outputs=[output_images],
inputs=[
prompt,
negative_prompt,
style,
seed,
model,
scheduler,
width,
height,
guidance_scale,
inference_steps,
num_images,
use_karras,
use_taesd,
use_clip_skip,
truncate_prompts,
increment_seed,
deepcache_interval,
tgate_step,
tome_ratio,
],
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False)
parser.add_argument("-s", "--server", type=str, metavar="STR", default="0.0.0.0")
parser.add_argument("-p", "--port", type=int, metavar="INT", default=7860)
args = parser.parse_args()
# https://www.gradio.app/docs/gradio/interface#interface-queue
demo.queue().launch(
server_name=args.server,
server_port=args.port,
)