diffusion / lib /loader.py
adamelliotfields's picture
Image-to-image fixes
eb8fc69 verified
raw
history blame
6.53 kB
import torch
from DeepCache import DeepCacheSDHelper
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionImg2ImgPipeline,
StableDiffusionPipeline,
)
from diffusers.models import AutoencoderKL, AutoencoderTiny
from torch._dynamo import OptimizedModule
from .upscaler import RealESRGAN
__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="diffusers")
# inspired by ComfyUI
# https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/model_management.py
class Loader:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(Loader, cls).__new__(cls)
cls._instance.pipe = None
cls._instance.upscaler = None
return cls._instance
def _load_upscaler(self, device=None, scale=4):
same_scale = self.upscaler is not None and self.upscaler.scale == scale
if scale == 1:
self.upscaler = None
if scale > 1 and not same_scale:
self.upscaler = RealESRGAN(device=device, scale=scale)
self.upscaler.load_weights()
def _load_deepcache(self, interval=1):
has_deepcache = hasattr(self.pipe, "deepcache")
if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval:
return
if has_deepcache:
self.pipe.deepcache.disable()
else:
self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe)
self.pipe.deepcache.set_params(cache_interval=interval)
self.pipe.deepcache.enable()
def _load_freeu(self, freeu=False):
# https://github.com/huggingface/diffusers/blob/v0.30.0/src/diffusers/models/unets/unet_2d_condition.py
block = self.pipe.unet.up_blocks[0]
attrs = ["b1", "b2", "s1", "s2"]
has_freeu = all(getattr(block, attr, None) is not None for attr in attrs)
if has_freeu and not freeu:
self.pipe.disable_freeu()
elif not has_freeu and freeu:
# https://github.com/ChenyangSi/FreeU
self.pipe.enable_freeu(b1=1.5, b2=1.6, s1=0.9, s2=0.2)
def _load_vae(self, model_name=None, taesd=False, variant=None):
vae_type = type(self.pipe.vae)
is_kl = issubclass(vae_type, (AutoencoderKL, OptimizedModule))
is_tiny = issubclass(vae_type, AutoencoderTiny)
# by default all models use KL
if is_kl and taesd:
# can't compile tiny VAE
print("Switching to Tiny VAE...")
self.pipe.vae = AutoencoderTiny.from_pretrained(
pretrained_model_name_or_path="madebyollin/taesd",
).to(self.pipe.device, self.pipe.dtype)
return
if is_tiny and not taesd:
print("Switching to KL VAE...")
model = AutoencoderKL.from_pretrained(
pretrained_model_name_or_path=model_name,
subfolder="vae",
variant=variant,
).to(self.pipe.device, self.pipe.dtype)
self.pipe.vae = torch.compile(
mode="reduce-overhead",
fullgraph=True,
model=model,
)
def _load_pipeline(self, kind, model, device, dtype, **kwargs):
pipelines = {
"txt2img": StableDiffusionPipeline,
"img2img": StableDiffusionImg2ImgPipeline,
}
if self.pipe is None:
self.pipe = pipelines[kind].from_pretrained(model, **kwargs).to(device, dtype)
if not isinstance(self.pipe, pipelines[kind]):
self.pipe = pipelines[kind].from_pipe(self.pipe).to(device, dtype)
def load(
self,
kind,
model,
scheduler,
karras,
taesd,
freeu,
deepcache,
scale,
device,
dtype,
):
model_lower = model.lower()
schedulers = {
"DEIS 2M": DEISMultistepScheduler,
"DPM++ 2M": DPMSolverMultistepScheduler,
"DPM2 a": KDPM2AncestralDiscreteScheduler,
"Euler a": EulerAncestralDiscreteScheduler,
"Heun": HeunDiscreteScheduler,
"LMS": LMSDiscreteScheduler,
"PNDM": PNDMScheduler,
}
scheduler_kwargs = {
"beta_schedule": "scaled_linear",
"timestep_spacing": "leading",
"use_karras_sigmas": karras,
"beta_start": 0.00085,
"beta_end": 0.012,
"steps_offset": 1,
}
if scheduler in ["Euler a", "PNDM"]:
del scheduler_kwargs["use_karras_sigmas"]
# no fp16 variant
if model_lower not in [
"sg161222/realistic_vision_v5.1_novae",
"prompthero/openjourney-v4",
"linaqruf/anything-v3-1",
]:
variant = "fp16"
else:
variant = None
pipe_kwargs = {
"scheduler": schedulers[scheduler](**scheduler_kwargs),
"requires_safety_checker": False,
"safety_checker": None,
"variant": variant,
}
if self.pipe is None:
print(f"Loading {model_lower} with {'Tiny' if taesd else 'KL'} VAE...")
self._load_pipeline(kind, model_lower, device, dtype, **pipe_kwargs)
model_name = self.pipe.config._name_or_path
same_model = model_name.lower() == model_lower
same_scheduler = isinstance(self.pipe.scheduler, schedulers[scheduler])
same_karras = (
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
or self.pipe.scheduler.config.use_karras_sigmas == karras
)
if same_model:
if not same_scheduler:
print(f"Switching to {scheduler}...")
if not same_karras:
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
if not same_scheduler or not same_karras:
self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
else:
self.pipe = None
self._load_pipeline(kind, model_lower, device, dtype, **pipe_kwargs)
self._load_vae(model_lower, taesd, variant)
self._load_freeu(freeu)
self._load_deepcache(deepcache)
self._load_upscaler(device, scale)
torch.cuda.empty_cache()
return self.pipe, self.upscaler