adamelliotfields commited on
Commit
4d6f2bc
·
verified ·
1 Parent(s): 584d2bd
Files changed (7) hide show
  1. about.md +55 -0
  2. demo.css +59 -0
  3. demo.js +11 -0
  4. demo.py +222 -0
  5. generate.py +219 -0
  6. header.html +7 -0
  7. requirements.txt +9 -0
about.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Usage
2
+
3
+ Enter a prompt and click `Generate`. [Civitai](https://civitai.com) has an excellent guide on [prompting](https://education.civitai.com/civitais-prompt-crafting-guide-part-1-basics/).
4
+
5
+ ### Compel
6
+
7
+ Positive and negative prompts are embedded by [Compel](https://github.com/damian0815/compel), enabling weighting and blending. See [syntax features](https://github.com/damian0815/compel/blob/main/doc/syntax.md).
8
+
9
+ ### Arrays
10
+
11
+ Arrays allow you to generate different images from a single prompt. For example, `a cute [[cat,corgi,koala]]` will expand into 3 prompts. Note that it only works for the positive prompt. You must also increase `Images` to generate more than 1 image at a time. Inspired by [Fooocus](https://github.com/lllyasviel/Fooocus/pull/1503).
12
+
13
+ ### Autoincrement
14
+
15
+ If `Autoincrement` is checked, the seed will be incremented for each image. When using arrays, you might want to uncheck this so the same seed is used for each prompt variation.
16
+
17
+ ## Models
18
+
19
+ Models are diffusion pipelines. All use `float16`. Recommended settings are shown below:
20
+
21
+ * [fluently/fluently-v4](https://huggingface.co/fluently/Fluently-v4)
22
+ - sampler: DPM++ 2M, guidance: 5-7, steps: 20-30
23
+ * [lykon/dreamshaper-8](https://huggingface.co/Lykon/dreamshaper-8)
24
+ - sampler: DEIS 2M
25
+ * [prompthero/openjourney-v4](https://huggingface.co/prompthero/openjourney-v4)
26
+ - sampler: PNDM
27
+ * [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)
28
+ - sampler: PNDM
29
+ * [sg161222/realistic_vision_v5.1](https://huggingface.co/SG161222/Realistic_Vision_V5.1_noVAE)
30
+ - sampler: DPM++ 2M, guidance: 4-7
31
+
32
+ ### Schedulers
33
+
34
+ All are based on [k_diffusion](https://github.com/crowsonkb/k-diffusion) except [DEIS](https://github.com/qsh-zh/deis) and [DPM++](https://github.com/LuChengTHU/dpm-solver). Optionally, the [Karras](https://arxiv.org/abs/2206.00364) noise schedule can be used.
35
+
36
+ * [DEIS 2M](https://huggingface.co/docs/diffusers/en/api/schedulers/deis)
37
+ * [DPM++ 2M](https://huggingface.co/docs/diffusers/en/api/schedulers/multistep_dpm_solver)
38
+ * [DPM2 a](https://huggingface.co/docs/diffusers/api/schedulers/dpm_discrete_ancestral)
39
+ * [Euler a](https://huggingface.co/docs/diffusers/en/api/schedulers/euler_ancestral)
40
+ * [Heun](https://huggingface.co/docs/diffusers/api/schedulers/heun)
41
+ * [LMS](https://huggingface.co/docs/diffusers/api/schedulers/lms_discrete)
42
+ * [PNDM](https://huggingface.co/docs/diffusers/api/schedulers/pndm)
43
+
44
+ ### VAE
45
+
46
+ All models use [madebyollin/taesd](https://huggingface.co/madebyollin/taesd) for speed.
47
+
48
+ ## TODO
49
+
50
+ - [ ] Performance improvements
51
+ - [ ] Support `bfloat16`
52
+ - [ ] Support LoRA
53
+ - [ ] Add VAE radio
54
+ - [ ] Add styles
55
+ - [ ] Badges
demo.css ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .accordion {
2
+ background-color: transparent;
3
+ }
4
+ .accordion > button {
5
+ justify-content: flex-start;
6
+ }
7
+ .accordion > button > span:first-child {
8
+ width: auto;
9
+ margin-right: 4px;
10
+ }
11
+
12
+ .gr-group div {
13
+ gap: 0px;
14
+ }
15
+
16
+ .tabs, .tabitem, .tab-nav, .tab-nav > .selected {
17
+ border-width: 0px;
18
+ }
19
+
20
+ #about {
21
+ padding: 20px 24px;
22
+ }
23
+
24
+ #gallery {
25
+ background-color: var(--bg);
26
+ }
27
+ #gallery > div:nth-child(2) {
28
+ overflow-y: hidden;
29
+ }
30
+ .dark #gallery {
31
+ background-color: var(--background-fill-primary);
32
+ }
33
+
34
+ #header {
35
+ display: flex;
36
+ align-items: center;
37
+ }
38
+ #header > svg {
39
+ display: inline-block;
40
+ width: 1.75rem;
41
+ height: 1.75rem;
42
+ margin-left: 0.5rem;
43
+ fill: #047857 !important;
44
+ animation: spin 3s linear infinite reverse;
45
+ }
46
+ #header > svg:is(.dark *) {
47
+ fill: #10b981 !important;
48
+ }
49
+ @keyframes spin {
50
+ 100% { transform: rotate(360deg); }
51
+ }
52
+
53
+ #menu-tabs {
54
+ margin-top: 12px;
55
+ }
56
+
57
+ #random-seed > button {
58
+ margin-right: 8px;
59
+ }
demo.js ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ () =>{
2
+ const menu = document.querySelector("#menu");
3
+ const menuButton = menu.querySelector("button");
4
+
5
+ // scroll on accordion click
6
+ menuButton.addEventListener("click", () => {
7
+ requestAnimationFrame(() => {
8
+ menu.scrollIntoView({ behavior: "instant" });
9
+ });
10
+ });
11
+ }
demo.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+
3
+ import gradio as gr
4
+
5
+ from generate import generate
6
+
7
+ # base font stacks
8
+ mono_fonts = ["monospace"]
9
+ sans_fonts = [
10
+ "sans-serif",
11
+ "Apple Color Emoji",
12
+ "Segoe UI Emoji",
13
+ "Segoe UI Symbol",
14
+ "Noto Color Emoji",
15
+ ]
16
+
17
+
18
+ def read_file(path: str) -> str:
19
+ with open(path, "r", encoding="utf-8") as file:
20
+ return file.read()
21
+
22
+
23
+ def toggle_json(checkbox: gr.Checkbox, json: gr.JSON) -> None:
24
+ json.visible = checkbox
25
+
26
+
27
+ # don't request a GPU if input is bad
28
+ def generate_btn_click(*args, **kwargs):
29
+ start = time.perf_counter()
30
+
31
+ if "prompt" in kwargs:
32
+ prompt = kwargs.get("prompt")
33
+ elif len(args) > 0:
34
+ prompt = args[0]
35
+ else:
36
+ prompt = None
37
+
38
+ if prompt is None or prompt.strip() == "":
39
+ raise gr.Error("You must enter a prompt")
40
+
41
+ images = generate(*args, **kwargs)
42
+ end = time.perf_counter()
43
+ diff = end - start
44
+ gr.Info(f"Generated {len(images)} images in {diff:.2f}s")
45
+ return images
46
+
47
+
48
+ with gr.Blocks(
49
+ css="./demo.css",
50
+ js="./demo.js",
51
+ theme=gr.themes.Default(
52
+ # colors
53
+ primary_hue=gr.themes.colors.orange,
54
+ secondary_hue=gr.themes.colors.blue,
55
+ neutral_hue=gr.themes.colors.gray,
56
+ # sizing
57
+ text_size=gr.themes.sizes.text_md,
58
+ spacing_size=gr.themes.sizes.spacing_md,
59
+ radius_size=gr.themes.sizes.radius_sm,
60
+ # fonts
61
+ font=[gr.themes.GoogleFont("Inter"), *sans_fonts],
62
+ font_mono=[gr.themes.GoogleFont("Ubuntu Mono"), *mono_fonts],
63
+ ).set(
64
+ block_background_fill=gr.themes.colors.gray.c50,
65
+ block_background_fill_dark=gr.themes.colors.gray.c900,
66
+ block_border_width="0px",
67
+ block_border_width_dark="0px",
68
+ block_shadow="0 0 #0000",
69
+ block_shadow_dark="0 0 #0000",
70
+ block_title_text_weight=500,
71
+ form_gap_width="0px",
72
+ section_header_text_weight=500,
73
+ ),
74
+ ) as demo:
75
+ gr.HTML(read_file("header.html"))
76
+ output_images = gr.Gallery(
77
+ height=320,
78
+ label="Output",
79
+ show_label=False,
80
+ columns=4,
81
+ interactive=False,
82
+ elem_id="gallery",
83
+ )
84
+
85
+ with gr.Group():
86
+ prompt = gr.Textbox(
87
+ label="Prompt",
88
+ show_label=False,
89
+ lines=2,
90
+ placeholder="A painting of a sunset over a mountain",
91
+ value=None,
92
+ elem_id="prompt",
93
+ )
94
+ generate_btn = gr.Button("Generate", variant="primary", elem_classes=[])
95
+
96
+ with gr.Accordion(
97
+ label="Menu",
98
+ open=True,
99
+ elem_id="menu",
100
+ elem_classes=["accordion"],
101
+ ):
102
+ with gr.Tabs(elem_id="menu-tabs"):
103
+ with gr.TabItem("⚙️ Settings"):
104
+ with gr.Group():
105
+ negative_prompt = gr.Textbox(
106
+ label="Negative Prompt",
107
+ lines=1,
108
+ placeholder="ugly, bad art, low quality",
109
+ value="",
110
+ )
111
+
112
+ with gr.Row():
113
+ num_images = gr.Dropdown(
114
+ label="Images",
115
+ choices=[1, 2, 3, 4],
116
+ value=1,
117
+ filterable=False,
118
+ )
119
+ aspect_ratio = gr.Dropdown(
120
+ label="Aspect Ratio",
121
+ choices=["1:1", "4:3", "3:4", "16:9", "9:16"],
122
+ value="1:1",
123
+ filterable=False,
124
+ )
125
+
126
+ with gr.Row():
127
+ guidance_scale = gr.Slider(
128
+ label="Guidance Scale",
129
+ minimum=1.0,
130
+ maximum=15.0,
131
+ step=0.1,
132
+ value=7,
133
+ )
134
+ inference_steps = gr.Slider(
135
+ label="Inference Steps",
136
+ minimum=1,
137
+ maximum=50,
138
+ step=1,
139
+ value=30,
140
+ )
141
+
142
+ with gr.Column():
143
+ seed = gr.Number(label="Seed", value=0)
144
+ with gr.Row():
145
+ random_seed_btn = gr.Button(
146
+ "🎲 Random",
147
+ variant="secondary",
148
+ size="sm",
149
+ scale=1,
150
+ )
151
+ increment_seed = gr.Checkbox(
152
+ label="Autoincrement",
153
+ value=True,
154
+ scale=8,
155
+ elem_classes=["checkbox"],
156
+ elem_id="increment-seed",
157
+ )
158
+
159
+ with gr.TabItem("🧠 Model"):
160
+ model = gr.Dropdown(
161
+ label="Model",
162
+ choices=[
163
+ "fluently/Fluently-v4",
164
+ "Lykon/dreamshaper-8",
165
+ "prompthero/openjourney-v4",
166
+ "runwayml/stable-diffusion-v1-5",
167
+ "SG161222/Realistic_Vision_V5.1_Novae",
168
+ ],
169
+ value="Lykon/dreamshaper-8",
170
+ )
171
+ scheduler = gr.Dropdown(
172
+ label="Scheduler",
173
+ choices=[
174
+ "DEIS 2M",
175
+ "DPM++ 2M",
176
+ "DPM2 a",
177
+ "Euler a",
178
+ "Heun",
179
+ "LMS",
180
+ "PNDM",
181
+ ],
182
+ value="DEIS 2M",
183
+ elem_id="scheduler",
184
+ )
185
+ use_karras = gr.Checkbox(
186
+ label="Karras σ",
187
+ value=True,
188
+ elem_classes=["checkbox"],
189
+ )
190
+
191
+ with gr.TabItem("ℹ️ About", elem_id="about"):
192
+ gr.Markdown(read_file("about.md"))
193
+
194
+ # update the random seed using JavaScript
195
+ random_seed_btn.click(None, outputs=[seed], js="() => Math.floor(Math.random() * 2**32)")
196
+
197
+ generate_btn.click(
198
+ generate_btn_click,
199
+ api_name="generate",
200
+ outputs=[output_images],
201
+ inputs=[
202
+ prompt,
203
+ negative_prompt,
204
+ seed,
205
+ model,
206
+ scheduler,
207
+ aspect_ratio,
208
+ guidance_scale,
209
+ inference_steps,
210
+ use_karras,
211
+ num_images,
212
+ increment_seed,
213
+ ],
214
+ )
215
+
216
+ # https://www.gradio.app/docs/gradio/interface#interface-queue
217
+ demo.queue().launch(
218
+ {
219
+ "server_name": "0.0.0.0",
220
+ "server_port": 7860,
221
+ }
222
+ )
generate.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from datetime import datetime
3
+ from itertools import product
4
+ from os import environ
5
+ from warnings import filterwarnings
6
+
7
+ import spaces
8
+ import torch
9
+ from compel import Compel
10
+ from diffusers import (
11
+ DEISMultistepScheduler,
12
+ DPMSolverMultistepScheduler,
13
+ EulerAncestralDiscreteScheduler,
14
+ HeunDiscreteScheduler,
15
+ KDPM2AncestralDiscreteScheduler,
16
+ LMSDiscreteScheduler,
17
+ PNDMScheduler,
18
+ StableDiffusionPipeline,
19
+ )
20
+ from diffusers.models import AutoencoderTiny
21
+
22
+ # some models use the deprecated CLIPFeatureExtractor class
23
+ # should use CLIPImageProcessor instead
24
+ filterwarnings("ignore", category=FutureWarning, module="transformers")
25
+
26
+
27
+ class Loader:
28
+ _instance = None
29
+
30
+ def __new__(cls):
31
+ if cls._instance is None:
32
+ cls._instance = super(Loader, cls).__new__(cls)
33
+ cls._instance.cpu = torch.device("cpu")
34
+ cls._instance.gpu = torch.device("cuda")
35
+ cls._instance.model_cpu = None
36
+ cls._instance.model_gpu = None
37
+ return cls._instance
38
+
39
+ def load(self, model, scheduler, karras):
40
+ SPACES_ZERO_GPU = (
41
+ environ.get("SPACES_ZERO_GPU", "").lower() == "true"
42
+ or environ.get("SPACES_ZERO_GPU", "") == "1"
43
+ )
44
+ model_lower = model.lower()
45
+
46
+ scheduler_map = {
47
+ "DEIS 2M": DEISMultistepScheduler,
48
+ "DPM++ 2M": DPMSolverMultistepScheduler,
49
+ "DPM2 a": KDPM2AncestralDiscreteScheduler,
50
+ "Euler a": EulerAncestralDiscreteScheduler,
51
+ "Heun": HeunDiscreteScheduler,
52
+ "LMS": LMSDiscreteScheduler,
53
+ "PNDM": PNDMScheduler,
54
+ }
55
+
56
+ scheduler_kwargs = {
57
+ "beta_start": 0.00085,
58
+ "beta_end": 0.012,
59
+ "beta_schedule": "scaled_linear",
60
+ "timestep_spacing": "leading",
61
+ "steps_offset": 1,
62
+ }
63
+
64
+ if self.model_gpu is not None:
65
+ same_model = self.model_gpu.config._name_or_path.lower() == model_lower
66
+ same_scheduler = isinstance(self.model_gpu.scheduler, scheduler_map[scheduler])
67
+ same_karras = (
68
+ not hasattr(self.model_gpu.scheduler.config, "use_karras_sigmas")
69
+ or self.model_gpu.scheduler.config.use_karras_sigmas == karras
70
+ )
71
+ if same_model and same_scheduler and same_karras:
72
+ return self.model_gpu
73
+
74
+ if karras:
75
+ scheduler_kwargs["use_karras_sigmas"] = True
76
+
77
+ if scheduler == "PNDM":
78
+ del scheduler_kwargs["use_karras_sigmas"]
79
+
80
+ variant = (
81
+ None
82
+ if model_lower in ["sg161222/realistic_vision_v5.1_novae", "prompthero/openjourney-v4"]
83
+ else "fp16"
84
+ )
85
+
86
+ pipeline_kwargs = {
87
+ "pretrained_model_name_or_path": model_lower,
88
+ "requires_safety_checker": False,
89
+ "safety_checker": None,
90
+ "scheduler": scheduler_map[scheduler](**scheduler_kwargs),
91
+ "torch_dtype": torch.float16,
92
+ "variant": variant,
93
+ "use_safetensors": True,
94
+ "vae": AutoencoderTiny.from_pretrained(
95
+ "madebyollin/taesd",
96
+ torch_dtype=torch.float16,
97
+ use_safetensors=True,
98
+ ),
99
+ }
100
+
101
+ scheduler_cls = scheduler_map[scheduler]
102
+ pipeline_kwargs["scheduler"] = scheduler_cls(**scheduler_kwargs)
103
+
104
+ # in ZeroGPU we always start fresh
105
+ if SPACES_ZERO_GPU:
106
+ self.model_gpu = None
107
+ self.model_cpu = None
108
+
109
+ if self.model_gpu is not None:
110
+ model_gpu_name = self.model_gpu.config._name_or_path
111
+ self.model_cpu = self.model_gpu.to(self.cpu, silence_dtype_warnings=True)
112
+ self.model_gpu = None
113
+ torch.cuda.empty_cache()
114
+ print(f"Moved {model_gpu_name} to CPU ✓")
115
+
116
+ self.model_gpu = StableDiffusionPipeline.from_pretrained(**pipeline_kwargs).to(self.gpu)
117
+ print(f"Moved {model_lower} to GPU ✓")
118
+ return self.model_gpu
119
+
120
+
121
+ # prepare prompts for Compel
122
+ def join_prompt(prompt: str) -> str:
123
+ lines = prompt.strip().splitlines()
124
+ return '("' + '", "'.join(lines) + '").and()' if len(lines) > 1 else prompt
125
+
126
+
127
+ # parse prompts with arrays
128
+ def parse_prompt(prompt: str) -> list[str]:
129
+ joined_prompt = join_prompt(prompt)
130
+ arrays = re.findall(r"\[\[(.*?)\]\]", joined_prompt)
131
+
132
+ if not arrays:
133
+ return [joined_prompt]
134
+
135
+ tokens = [item.split(",") for item in arrays]
136
+ combinations = list(product(*tokens))
137
+ prompts = []
138
+
139
+ for combo in combinations:
140
+ current_prompt = joined_prompt
141
+ for i, token in enumerate(combo):
142
+ current_prompt = current_prompt.replace(f"[[{arrays[i]}]]", token.strip(), 1)
143
+
144
+ prompts.append(current_prompt)
145
+ return prompts
146
+
147
+
148
+ @spaces.GPU(duration=30)
149
+ def generate(
150
+ positive_prompt,
151
+ negative_prompt="",
152
+ seed=None,
153
+ model="lykon/dreamshaper-8",
154
+ scheduler="DEIS 2M",
155
+ aspect_ratio="1:1",
156
+ guidance_scale=7,
157
+ inference_steps=30,
158
+ karras=True,
159
+ num_images=1,
160
+ increment_seed=True,
161
+ ):
162
+ # image dimensions
163
+ aspect_ratios = {
164
+ "16:9": (640, 360),
165
+ "4:3": (576, 432),
166
+ "1:1": (512, 512),
167
+ "3:4": (432, 576),
168
+ "9:16": (360, 640),
169
+ }
170
+ width, height = aspect_ratios[aspect_ratio]
171
+
172
+ with torch.inference_mode():
173
+ loader = Loader()
174
+ pipe = loader.load(model, scheduler, karras)
175
+
176
+ # prompt embeds
177
+ compel = Compel(
178
+ tokenizer=pipe.tokenizer,
179
+ text_encoder=pipe.text_encoder,
180
+ truncate_long_prompts=False,
181
+ device=pipe.device.type,
182
+ dtype_for_device_getter=lambda _: torch.float16,
183
+ )
184
+
185
+ neg_prompt = join_prompt(negative_prompt)
186
+ neg_embeds = compel(neg_prompt)
187
+
188
+ if seed is None:
189
+ seed = int(datetime.now().timestamp())
190
+
191
+ current_seed = seed
192
+ images = []
193
+
194
+ for i in range(num_images):
195
+ generator = torch.Generator(device=pipe.device.type).manual_seed(current_seed)
196
+ all_positive_prompts = parse_prompt(positive_prompt)
197
+ prompt_index = i % len(all_positive_prompts)
198
+ pos_prompt = all_positive_prompts[prompt_index]
199
+ pos_embeds = compel(pos_prompt)
200
+ pos_embeds, neg_embeds = compel.pad_conditioning_tensors_to_same_length(
201
+ [pos_embeds, neg_embeds]
202
+ )
203
+
204
+ result = pipe(
205
+ width=width,
206
+ height=height,
207
+ prompt_embeds=pos_embeds,
208
+ negative_prompt_embeds=neg_embeds,
209
+ num_inference_steps=inference_steps,
210
+ guidance_scale=guidance_scale,
211
+ generator=generator,
212
+ )
213
+
214
+ images.append((result.images[0], str(current_seed)))
215
+
216
+ if increment_seed:
217
+ current_seed += 1
218
+
219
+ return images
header.html ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ <div id="header">
2
+ <h1>Stable Diffusion <em>Zero</em></h1>
3
+ <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 15 15">
4
+ <path d="M7.48877 6.75C7.29015 6.75 7.09967 6.82902 6.95923 6.96967C6.81879 7.11032 6.73989 7.30109 6.73989 7.5C6.73989 7.69891 6.81879 7.88968 6.95923 8.03033C7.09967 8.17098 7.29015 8.25 7.48877 8.25C7.68738 8.25 7.87786 8.17098 8.0183 8.03033C8.15874 7.88968 8.23764 7.69891 8.23764 7.5C8.23764 7.30109 8.15874 7.11032 8.0183 6.96967C7.87786 6.82902 7.68738 6.75 7.48877 6.75ZM7.8632 0C11.2331 0 11.3155 2.6775 9.54818 3.5625C8.80679 3.93 8.47728 4.7175 8.335 5.415C8.69446 5.565 9.00899 5.7975 9.24863 6.0975C12.0195 4.5975 15 5.19 15 7.875C15 11.25 12.3265 11.325 11.4428 9.5475C11.0684 8.805 10.2746 8.475 9.57813 8.3325C9.42836 8.6925 9.19621 9 8.89665 9.255C10.3869 12.0225 9.79531 15 7.11433 15C3.74438 15 3.67698 12.315 5.44433 11.43C6.17823 11.0625 6.50774 10.2825 6.65751 9.5925C6.29056 9.4425 5.96855 9.2025 5.72891 8.9025C2.96555 10.3875 0 9.8025 0 7.125C0 3.75 2.666 3.6675 3.54967 5.445C3.92411 6.1875 4.71043 6.51 5.40689 6.6525C5.54918 6.2925 5.78882 5.9775 6.09586 5.7375C4.60559 2.97 5.1972 0 7.8632 0Z"></path>
5
+ </svg>
6
+ </div>
7
+ <p>Stable Diffusion 1.5 with extras. Powered by 🤗 <a href="https://huggingface.co/spaces/zero-gpu-explorers/README" target="_blank" rel="noopener noreferrer">ZeroGPU</a>.</p>
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ accelerate
2
+ compel
3
+ diffusers
4
+ hf-transfer
5
+ gradio==4.39.0
6
+ ruff
7
+ spaces
8
+ torch
9
+ torchvision