Spaces:
Running
on
Zero
Running
on
Zero
adamelliotfields
commited on
Add CLI
Browse files- README.md +5 -2
- app.py +41 -12
- cli.py +59 -0
- generate.py +6 -5
- usage.md +5 -5
README.md
CHANGED
@@ -56,8 +56,11 @@ python -m venv .venv
|
|
56 |
source .venv/bin/activate
|
57 |
pip install -r requirements.txt torch==2.4.0 torchvision==0.19.0
|
58 |
|
59 |
-
#
|
60 |
-
python app.py
|
|
|
|
|
|
|
61 |
```
|
62 |
|
63 |
## TODO
|
|
|
56 |
source .venv/bin/activate
|
57 |
pip install -r requirements.txt torch==2.4.0 torchvision==0.19.0
|
58 |
|
59 |
+
# gradio
|
60 |
+
python app.py --port 7860
|
61 |
+
|
62 |
+
# cli
|
63 |
+
python cli.py 'an astronaut riding a horse on mars'
|
64 |
```
|
65 |
|
66 |
## TODO
|
app.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from generate import generate
|
@@ -40,7 +42,7 @@ def generate_btn_click(*args):
|
|
40 |
prompt = None
|
41 |
if prompt is None or prompt.strip() == "":
|
42 |
raise gr.Error("You must enter a prompt")
|
43 |
-
return generate(*args)
|
44 |
|
45 |
|
46 |
with gr.Blocks(
|
@@ -87,10 +89,10 @@ with gr.Blocks(
|
|
87 |
|
88 |
with gr.Row():
|
89 |
num_images = gr.Dropdown(
|
90 |
-
choices=list(range(1,
|
91 |
filterable=False,
|
92 |
label="Images",
|
93 |
-
value=
|
94 |
scale=1,
|
95 |
)
|
96 |
width = gr.Slider(
|
@@ -129,6 +131,7 @@ with gr.Blocks(
|
|
129 |
with gr.Row():
|
130 |
model = gr.Dropdown(
|
131 |
value="Lykon/dreamshaper-8",
|
|
|
132 |
min_width=200,
|
133 |
label="Model",
|
134 |
scale=2,
|
@@ -144,6 +147,7 @@ with gr.Blocks(
|
|
144 |
scheduler = gr.Dropdown(
|
145 |
elem_id="scheduler",
|
146 |
label="Scheduler",
|
|
|
147 |
value="DEIS 2M",
|
148 |
min_width=200,
|
149 |
scale=2,
|
@@ -186,14 +190,22 @@ with gr.Blocks(
|
|
186 |
tgate_step = gr.Slider(
|
187 |
label="T-GATE Step",
|
188 |
minimum=0,
|
189 |
-
maximum=
|
190 |
-
value=
|
191 |
step=1,
|
192 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
tome_ratio = gr.Slider(
|
194 |
label="ToMe Ratio",
|
195 |
minimum=0.0,
|
196 |
-
maximum=
|
197 |
value=0.0,
|
198 |
step=0.01,
|
199 |
)
|
@@ -263,7 +275,18 @@ with gr.Blocks(
|
|
263 |
# update the random seed using JavaScript
|
264 |
random_btn.click(None, outputs=[seed], js=SEED_JS)
|
265 |
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
generate_btn.click(
|
268 |
generate_btn_click,
|
269 |
api_name="api",
|
@@ -291,8 +314,14 @@ with gr.Blocks(
|
|
291 |
],
|
292 |
)
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
import gradio as gr
|
4 |
|
5 |
from generate import generate
|
|
|
42 |
prompt = None
|
43 |
if prompt is None or prompt.strip() == "":
|
44 |
raise gr.Error("You must enter a prompt")
|
45 |
+
return generate(*args, log=gr.Info, Error=gr.Error)
|
46 |
|
47 |
|
48 |
with gr.Blocks(
|
|
|
89 |
|
90 |
with gr.Row():
|
91 |
num_images = gr.Dropdown(
|
92 |
+
choices=list(range(1, 5)),
|
93 |
filterable=False,
|
94 |
label="Images",
|
95 |
+
value=4,
|
96 |
scale=1,
|
97 |
)
|
98 |
width = gr.Slider(
|
|
|
131 |
with gr.Row():
|
132 |
model = gr.Dropdown(
|
133 |
value="Lykon/dreamshaper-8",
|
134 |
+
filterable=False,
|
135 |
min_width=200,
|
136 |
label="Model",
|
137 |
scale=2,
|
|
|
147 |
scheduler = gr.Dropdown(
|
148 |
elem_id="scheduler",
|
149 |
label="Scheduler",
|
150 |
+
filterable=False,
|
151 |
value="DEIS 2M",
|
152 |
min_width=200,
|
153 |
scale=2,
|
|
|
190 |
tgate_step = gr.Slider(
|
191 |
label="T-GATE Step",
|
192 |
minimum=0,
|
193 |
+
maximum=30,
|
194 |
+
value=0,
|
195 |
step=1,
|
196 |
)
|
197 |
+
|
198 |
+
with gr.Row():
|
199 |
+
file_format = gr.Dropdown(
|
200 |
+
choices=["png", "jpeg", "webp"],
|
201 |
+
label="File Format",
|
202 |
+
filterable=False,
|
203 |
+
value="png",
|
204 |
+
)
|
205 |
tome_ratio = gr.Slider(
|
206 |
label="ToMe Ratio",
|
207 |
minimum=0.0,
|
208 |
+
maximum=0.5,
|
209 |
value=0.0,
|
210 |
step=0.01,
|
211 |
)
|
|
|
275 |
# update the random seed using JavaScript
|
276 |
random_btn.click(None, outputs=[seed], js=SEED_JS)
|
277 |
|
278 |
+
file_format.change(
|
279 |
+
lambda f: gr.Gallery(format=f),
|
280 |
+
inputs=[file_format],
|
281 |
+
outputs=[output_images],
|
282 |
+
)
|
283 |
+
|
284 |
+
inference_steps.change(
|
285 |
+
lambda max, step: gr.Slider(maximum=max, value=min(max, step)),
|
286 |
+
inputs=[inference_steps, tgate_step],
|
287 |
+
outputs=[tgate_step],
|
288 |
+
)
|
289 |
+
|
290 |
generate_btn.click(
|
291 |
generate_btn_click,
|
292 |
api_name="api",
|
|
|
314 |
],
|
315 |
)
|
316 |
|
317 |
+
if __name__ == "__main__":
|
318 |
+
parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False)
|
319 |
+
parser.add_argument("-s", "--server", type=str, metavar="STR", default="0.0.0.0")
|
320 |
+
parser.add_argument("-p", "--port", type=int, metavar="INT", default=7860)
|
321 |
+
args = parser.parse_args()
|
322 |
+
|
323 |
+
# https://www.gradio.app/docs/gradio/interface#interface-queue
|
324 |
+
demo.queue().launch(
|
325 |
+
server_name=args.server,
|
326 |
+
server_port=args.port,
|
327 |
+
)
|
cli.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
from generate import generate
|
4 |
+
|
5 |
+
|
6 |
+
def save_images(images, filename="image.png"):
|
7 |
+
for i, (img, _) in enumerate(images):
|
8 |
+
name, ext = filename.rsplit(".", 1)
|
9 |
+
img.save(f"{name}.{ext}" if len(images) == 1 else f"{name}_{i}.{ext}")
|
10 |
+
|
11 |
+
|
12 |
+
def main():
|
13 |
+
parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False)
|
14 |
+
parser.add_argument("prompt", type=str, metavar="PROMPT")
|
15 |
+
parser.add_argument("-n", "--negative", type=str, metavar="STR", default="<fast_negative>")
|
16 |
+
parser.add_argument("-s", "--seed", type=int, metavar="INT")
|
17 |
+
parser.add_argument("-i", "--images", type=int, metavar="INT", default=1)
|
18 |
+
parser.add_argument("-f", "--filename", type=str, metavar="STR", default="image.png")
|
19 |
+
parser.add_argument("-w", "--width", type=int, metavar="INT", default=448)
|
20 |
+
parser.add_argument("-h", "--height", type=int, metavar="INT", default=576)
|
21 |
+
parser.add_argument("-m", "--model", type=str, metavar="STR", default="Lykon/dreamshaper-8")
|
22 |
+
parser.add_argument("-d", "--deepcache", type=int, metavar="INT", default=2)
|
23 |
+
parser.add_argument("-t", "--tgate", type=int, metavar="INT", default=20)
|
24 |
+
parser.add_argument("--scheduler", type=str, metavar="STR", default="DEIS 2M")
|
25 |
+
parser.add_argument("--guidance", type=float, metavar="FLOAT", default=7)
|
26 |
+
parser.add_argument("--steps", type=int, metavar="INT", default=30)
|
27 |
+
parser.add_argument("--tome", type=float, metavar="FLOAT", default=0.0)
|
28 |
+
parser.add_argument("--taesd", action="store_true")
|
29 |
+
parser.add_argument("--clip-skip", action="store_true")
|
30 |
+
parser.add_argument("--truncate", action="store_true")
|
31 |
+
parser.add_argument("--no-karras", action="store_false")
|
32 |
+
parser.add_argument("--no-increment", action="store_false")
|
33 |
+
|
34 |
+
args = parser.parse_args()
|
35 |
+
images = generate(
|
36 |
+
args.prompt,
|
37 |
+
args.negative,
|
38 |
+
args.seed,
|
39 |
+
args.model,
|
40 |
+
args.scheduler,
|
41 |
+
args.width,
|
42 |
+
args.height,
|
43 |
+
args.guidance,
|
44 |
+
args.steps,
|
45 |
+
args.images,
|
46 |
+
args.no_karras,
|
47 |
+
args.taesd,
|
48 |
+
args.clip_skip,
|
49 |
+
args.truncate,
|
50 |
+
args.no_increment,
|
51 |
+
args.deepcache,
|
52 |
+
args.tgate,
|
53 |
+
args.tome,
|
54 |
+
)
|
55 |
+
save_images(images, args.filename)
|
56 |
+
|
57 |
+
|
58 |
+
if __name__ == "__main__":
|
59 |
+
main()
|
generate.py
CHANGED
@@ -5,9 +5,9 @@ from datetime import datetime
|
|
5 |
from itertools import product
|
6 |
from os import environ
|
7 |
from types import MethodType
|
|
|
8 |
from warnings import filterwarnings
|
9 |
|
10 |
-
import gradio as gr
|
11 |
import spaces
|
12 |
import tomesd
|
13 |
import torch
|
@@ -80,7 +80,6 @@ class Loader:
|
|
80 |
tgate_sd_deepcache if has_deepcache else tgate_sd,
|
81 |
self.pipe,
|
82 |
)
|
83 |
-
|
84 |
return self.pipe.tgate
|
85 |
|
86 |
def _load_vae(self, model_name=None, taesd=False, dtype=None):
|
@@ -244,10 +243,11 @@ def generate(
|
|
244 |
deepcache_interval=1,
|
245 |
tgate_step=0,
|
246 |
tome_ratio=0,
|
247 |
-
|
|
|
248 |
):
|
249 |
if not torch.cuda.is_available():
|
250 |
-
raise
|
251 |
|
252 |
if seed is None:
|
253 |
seed = int(datetime.now().timestamp())
|
@@ -324,5 +324,6 @@ def generate(
|
|
324 |
|
325 |
end = time.perf_counter()
|
326 |
diff = end - start
|
327 |
-
|
|
|
328 |
return images
|
|
|
5 |
from itertools import product
|
6 |
from os import environ
|
7 |
from types import MethodType
|
8 |
+
from typing import Callable
|
9 |
from warnings import filterwarnings
|
10 |
|
|
|
11 |
import spaces
|
12 |
import tomesd
|
13 |
import torch
|
|
|
80 |
tgate_sd_deepcache if has_deepcache else tgate_sd,
|
81 |
self.pipe,
|
82 |
)
|
|
|
83 |
return self.pipe.tgate
|
84 |
|
85 |
def _load_vae(self, model_name=None, taesd=False, dtype=None):
|
|
|
243 |
deepcache_interval=1,
|
244 |
tgate_step=0,
|
245 |
tome_ratio=0,
|
246 |
+
log: Callable[[str], None] = None,
|
247 |
+
Error=Exception,
|
248 |
):
|
249 |
if not torch.cuda.is_available():
|
250 |
+
raise Error("CUDA not available")
|
251 |
|
252 |
if seed is None:
|
253 |
seed = int(datetime.now().timestamp())
|
|
|
324 |
|
325 |
end = time.perf_counter()
|
326 |
diff = end - start
|
327 |
+
if log:
|
328 |
+
log(f"Generated {len(images)} image{'s' if len(images) > 1 else ''} in {diff:.2f}s")
|
329 |
return images
|
usage.md
CHANGED
@@ -41,7 +41,7 @@ When using arrays, you should disable `Autoincrement` so the same seed is used f
|
|
41 |
|
42 |
#### Schedulers
|
43 |
|
44 |
-
|
45 |
|
46 |
* [DEIS 2M](https://huggingface.co/docs/diffusers/en/api/schedulers/deis) (default)
|
47 |
* [DPM++ 2M](https://huggingface.co/docs/diffusers/en/api/schedulers/multistep_dpm_solver)
|
@@ -63,11 +63,11 @@ All are based on [k_diffusion](https://github.com/crowsonkb/k-diffusion) except
|
|
63 |
|
64 |
#### T-GATE
|
65 |
|
66 |
-
[
|
67 |
|
68 |
-
####
|
69 |
|
70 |
-
[
|
71 |
|
72 |
#### Tiny VAE
|
73 |
|
@@ -79,4 +79,4 @@ When enabled, the last CLIP layer is skipped. This _can_ improve image quality w
|
|
79 |
|
80 |
#### Prompt Truncation
|
81 |
|
82 |
-
When enabled, prompts will be truncated to CLIP's limit of 77 tokens. By default this is
|
|
|
41 |
|
42 |
#### Schedulers
|
43 |
|
44 |
+
Optionally, the [Karras](https://arxiv.org/abs/2206.00364) noise schedule can be used:
|
45 |
|
46 |
* [DEIS 2M](https://huggingface.co/docs/diffusers/en/api/schedulers/deis) (default)
|
47 |
* [DPM++ 2M](https://huggingface.co/docs/diffusers/en/api/schedulers/multistep_dpm_solver)
|
|
|
63 |
|
64 |
#### T-GATE
|
65 |
|
66 |
+
[Temporal gating](https://github.com/HaozheLiu-ST/T-GATE) (Zhang et al. 2024) caches self and cross attention computations up to `Step`. Afterwards, attention is no longer computed and the cache is used, resulting in a noticeable speedup.
|
67 |
|
68 |
+
#### ToMe
|
69 |
|
70 |
+
[Token merging](https://arxiv.org/abs/2303.17604) (Bolya & Hoffman 2023) reduces the number of tokens processed by the model. Set `Ratio` to the desired reduction factor. ToMe's impact is more noticeable on larger images.
|
71 |
|
72 |
#### Tiny VAE
|
73 |
|
|
|
79 |
|
80 |
#### Prompt Truncation
|
81 |
|
82 |
+
When enabled, prompts will be truncated to CLIP's limit of 77 tokens. By default this is _disabled_, so Compel will chunk prompts into segments rather than cutting them off.
|