Spaces:
Running
on
Zero
Running
on
Zero
adamelliotfields
commited on
Fix progress bars
Browse files- app.py +7 -1
- lib/inference.py +7 -2
- lib/loader.py +6 -3
app.py
CHANGED
@@ -87,7 +87,13 @@ async def generate_fn(*args):
|
|
87 |
if prompt is None or prompt.strip() == "":
|
88 |
raise gr.Error("You must enter a prompt")
|
89 |
try:
|
90 |
-
images = await async_call(
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
except RuntimeError:
|
92 |
raise gr.Error("RuntimeError: Please try again")
|
93 |
return images
|
|
|
87 |
if prompt is None or prompt.strip() == "":
|
88 |
raise gr.Error("You must enter a prompt")
|
89 |
try:
|
90 |
+
images = await async_call(
|
91 |
+
generate,
|
92 |
+
*args,
|
93 |
+
Info=gr.Info,
|
94 |
+
Error=gr.Error,
|
95 |
+
progress=gr.Progress(),
|
96 |
+
)
|
97 |
except RuntimeError:
|
98 |
raise gr.Error("RuntimeError: Please try again")
|
99 |
return images
|
lib/inference.py
CHANGED
@@ -9,7 +9,6 @@ from itertools import product
|
|
9 |
from typing import Callable, TypeVar
|
10 |
|
11 |
import anyio
|
12 |
-
import gradio as gr
|
13 |
import numpy as np
|
14 |
import spaces
|
15 |
import torch
|
@@ -123,7 +122,7 @@ def generate(
|
|
123 |
clip_skip=False,
|
124 |
Info: Callable[[str], None] = None,
|
125 |
Error=Exception,
|
126 |
-
progress=
|
127 |
):
|
128 |
if not torch.cuda.is_available():
|
129 |
raise Error("CUDA not available")
|
@@ -150,10 +149,15 @@ def generate(
|
|
150 |
IP_ADAPTER = ""
|
151 |
|
152 |
if progress is not None:
|
|
|
153 |
progress((0, inference_steps), desc=f"Generating image {CURRENT_IMAGE}/{num_images}")
|
|
|
|
|
154 |
|
155 |
def callback_on_step_end(pipeline, step, timestep, latents):
|
156 |
nonlocal CURRENT_IMAGE
|
|
|
|
|
157 |
strength = denoising_strength if KIND == "img2img" else 1
|
158 |
total_steps = min(int(inference_steps * strength), inference_steps)
|
159 |
current_step = step + 1
|
@@ -177,6 +181,7 @@ def generate(
|
|
177 |
freeu,
|
178 |
deepcache,
|
179 |
scale,
|
|
|
180 |
DEVICE,
|
181 |
)
|
182 |
|
|
|
9 |
from typing import Callable, TypeVar
|
10 |
|
11 |
import anyio
|
|
|
12 |
import numpy as np
|
13 |
import spaces
|
14 |
import torch
|
|
|
122 |
clip_skip=False,
|
123 |
Info: Callable[[str], None] = None,
|
124 |
Error=Exception,
|
125 |
+
progress=None,
|
126 |
):
|
127 |
if not torch.cuda.is_available():
|
128 |
raise Error("CUDA not available")
|
|
|
149 |
IP_ADAPTER = ""
|
150 |
|
151 |
if progress is not None:
|
152 |
+
TQDM = False
|
153 |
progress((0, inference_steps), desc=f"Generating image {CURRENT_IMAGE}/{num_images}")
|
154 |
+
else:
|
155 |
+
TQDM = True
|
156 |
|
157 |
def callback_on_step_end(pipeline, step, timestep, latents):
|
158 |
nonlocal CURRENT_IMAGE
|
159 |
+
if progress is None:
|
160 |
+
return latents
|
161 |
strength = denoising_strength if KIND == "img2img" else 1
|
162 |
total_steps = min(int(inference_steps * strength), inference_steps)
|
163 |
current_step = step + 1
|
|
|
181 |
freeu,
|
182 |
deepcache,
|
183 |
scale,
|
184 |
+
TQDM,
|
185 |
DEVICE,
|
186 |
)
|
187 |
|
lib/loader.py
CHANGED
@@ -110,7 +110,7 @@ class Loader:
|
|
110 |
self.upscaler = RealESRGAN(device=device, scale=scale)
|
111 |
self.upscaler.load_weights()
|
112 |
|
113 |
-
def _load_pipeline(self, kind, model, device, **kwargs):
|
114 |
pipeline = Config.PIPELINES[kind]
|
115 |
if self.pipe is None:
|
116 |
print(f"Loading {model}...")
|
@@ -131,7 +131,9 @@ class Loader:
|
|
131 |
|
132 |
if not isinstance(self.pipe, pipeline):
|
133 |
self.pipe = pipeline.from_pipe(self.pipe).to(device)
|
134 |
-
|
|
|
|
|
135 |
|
136 |
def _load_vae(self, taesd=False, model=""):
|
137 |
vae_type = type(self.pipe.vae)
|
@@ -202,6 +204,7 @@ class Loader:
|
|
202 |
freeu,
|
203 |
deepcache,
|
204 |
scale,
|
|
|
205 |
device,
|
206 |
):
|
207 |
scheduler_kwargs = {
|
@@ -242,7 +245,7 @@ class Loader:
|
|
242 |
pipe_kwargs["torch_dtype"] = torch.float16
|
243 |
|
244 |
self._unload(kind, model, ip_adapter, scale)
|
245 |
-
self._load_pipeline(kind, model, device, **pipe_kwargs)
|
246 |
|
247 |
# error loading model
|
248 |
if self.pipe is None:
|
|
|
110 |
self.upscaler = RealESRGAN(device=device, scale=scale)
|
111 |
self.upscaler.load_weights()
|
112 |
|
113 |
+
def _load_pipeline(self, kind, model, tqdm, device, **kwargs):
|
114 |
pipeline = Config.PIPELINES[kind]
|
115 |
if self.pipe is None:
|
116 |
print(f"Loading {model}...")
|
|
|
131 |
|
132 |
if not isinstance(self.pipe, pipeline):
|
133 |
self.pipe = pipeline.from_pipe(self.pipe).to(device)
|
134 |
+
|
135 |
+
if not tqdm:
|
136 |
+
self.pipe.set_progress_bar_config(disable=True)
|
137 |
|
138 |
def _load_vae(self, taesd=False, model=""):
|
139 |
vae_type = type(self.pipe.vae)
|
|
|
204 |
freeu,
|
205 |
deepcache,
|
206 |
scale,
|
207 |
+
tqdm,
|
208 |
device,
|
209 |
):
|
210 |
scheduler_kwargs = {
|
|
|
245 |
pipe_kwargs["torch_dtype"] = torch.float16
|
246 |
|
247 |
self._unload(kind, model, ip_adapter, scale)
|
248 |
+
self._load_pipeline(kind, model, tqdm, device, **pipe_kwargs)
|
249 |
|
250 |
# error loading model
|
251 |
if self.pipe is None:
|