Spaces:
Running
on
Zero
Running
on
Zero
adamelliotfields
commited on
Remove T-GATE
Browse files- app.py +7 -23
- cli.py +0 -2
- config.py +0 -2
- generate.py +3 -25
- requirements.txt +0 -1
- usage.md +0 -4
app.py
CHANGED
@@ -180,6 +180,12 @@ with gr.Blocks(
|
|
180 |
with gr.TabItem("🛠️ Advanced"):
|
181 |
with gr.Group():
|
182 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
deepcache_interval = gr.Slider(
|
184 |
value=cfg.DEEPCACHE_INTERVAL,
|
185 |
label="DeepCache Interval",
|
@@ -187,21 +193,6 @@ with gr.Blocks(
|
|
187 |
maximum=4,
|
188 |
step=1,
|
189 |
)
|
190 |
-
tgate_step = gr.Slider(
|
191 |
-
maximum=cfg.INFERENCE_STEPS,
|
192 |
-
value=cfg.TGATE_STEP,
|
193 |
-
label="T-GATE Step",
|
194 |
-
minimum=0,
|
195 |
-
step=1,
|
196 |
-
)
|
197 |
-
|
198 |
-
with gr.Row():
|
199 |
-
file_format = gr.Dropdown(
|
200 |
-
choices=["png", "jpeg", "webp"],
|
201 |
-
label="File Format",
|
202 |
-
filterable=False,
|
203 |
-
value="png",
|
204 |
-
)
|
205 |
tome_ratio = gr.Slider(
|
206 |
value=cfg.TOME_RATIO,
|
207 |
label="ToMe Ratio",
|
@@ -227,7 +218,7 @@ with gr.Blocks(
|
|
227 |
elem_classes=["checkbox"],
|
228 |
label="Truncate prompts",
|
229 |
value=False,
|
230 |
-
scale=
|
231 |
)
|
232 |
|
233 |
with gr.TabItem("ℹ️ Usage"):
|
@@ -288,12 +279,6 @@ with gr.Blocks(
|
|
288 |
outputs=[output_images],
|
289 |
)
|
290 |
|
291 |
-
inference_steps.change(
|
292 |
-
lambda max, step: gr.Slider(maximum=max, value=min(max, step)),
|
293 |
-
inputs=[inference_steps, tgate_step],
|
294 |
-
outputs=[tgate_step],
|
295 |
-
)
|
296 |
-
|
297 |
gr.on(
|
298 |
triggers=[generate_btn.click, prompt.submit],
|
299 |
fn=handle_generate,
|
@@ -318,7 +303,6 @@ with gr.Blocks(
|
|
318 |
truncate_prompts,
|
319 |
increment_seed,
|
320 |
deepcache_interval,
|
321 |
-
tgate_step,
|
322 |
tome_ratio,
|
323 |
],
|
324 |
)
|
|
|
180 |
with gr.TabItem("🛠️ Advanced"):
|
181 |
with gr.Group():
|
182 |
with gr.Row():
|
183 |
+
file_format = gr.Dropdown(
|
184 |
+
choices=["png", "jpeg", "webp"],
|
185 |
+
label="File Format",
|
186 |
+
filterable=False,
|
187 |
+
value="png",
|
188 |
+
)
|
189 |
deepcache_interval = gr.Slider(
|
190 |
value=cfg.DEEPCACHE_INTERVAL,
|
191 |
label="DeepCache Interval",
|
|
|
193 |
maximum=4,
|
194 |
step=1,
|
195 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
tome_ratio = gr.Slider(
|
197 |
value=cfg.TOME_RATIO,
|
198 |
label="ToMe Ratio",
|
|
|
218 |
elem_classes=["checkbox"],
|
219 |
label="Truncate prompts",
|
220 |
value=False,
|
221 |
+
scale=1,
|
222 |
)
|
223 |
|
224 |
with gr.TabItem("ℹ️ Usage"):
|
|
|
279 |
outputs=[output_images],
|
280 |
)
|
281 |
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
gr.on(
|
283 |
triggers=[generate_btn.click, prompt.submit],
|
284 |
fn=handle_generate,
|
|
|
303 |
truncate_prompts,
|
304 |
increment_seed,
|
305 |
deepcache_interval,
|
|
|
306 |
tome_ratio,
|
307 |
],
|
308 |
)
|
cli.py
CHANGED
@@ -22,7 +22,6 @@ def main():
|
|
22 |
parser.add_argument("-h", "--height", type=int, metavar="INT", default=cfg.HEIGHT)
|
23 |
parser.add_argument("-m", "--model", type=str, metavar="STR", default=cfg.MODEL)
|
24 |
parser.add_argument("-d", "--deepcache", type=int, metavar="INT", default=cfg.DEEPCACHE_INTERVAL)
|
25 |
-
parser.add_argument("-t", "--tgate", type=int, metavar="INT", default=cfg.TGATE_STEP)
|
26 |
parser.add_argument("--style", type=str, metavar="STR", default=cfg.STYLE)
|
27 |
parser.add_argument("--scheduler", type=str, metavar="STR", default=cfg.SCHEDULER)
|
28 |
parser.add_argument("--guidance", type=float, metavar="FLOAT", default=cfg.GUIDANCE_SCALE)
|
@@ -54,7 +53,6 @@ def main():
|
|
54 |
args.truncate,
|
55 |
args.no_increment,
|
56 |
args.deepcache,
|
57 |
-
args.tgate,
|
58 |
args.tome,
|
59 |
)
|
60 |
save_images(images, args.filename)
|
|
|
22 |
parser.add_argument("-h", "--height", type=int, metavar="INT", default=cfg.HEIGHT)
|
23 |
parser.add_argument("-m", "--model", type=str, metavar="STR", default=cfg.MODEL)
|
24 |
parser.add_argument("-d", "--deepcache", type=int, metavar="INT", default=cfg.DEEPCACHE_INTERVAL)
|
|
|
25 |
parser.add_argument("--style", type=str, metavar="STR", default=cfg.STYLE)
|
26 |
parser.add_argument("--scheduler", type=str, metavar="STR", default=cfg.SCHEDULER)
|
27 |
parser.add_argument("--guidance", type=float, metavar="FLOAT", default=cfg.GUIDANCE_SCALE)
|
|
|
53 |
args.truncate,
|
54 |
args.no_increment,
|
55 |
args.deepcache,
|
|
|
56 |
args.tome,
|
57 |
)
|
58 |
save_images(images, args.filename)
|
config.py
CHANGED
@@ -49,6 +49,4 @@ INFERENCE_STEPS = 30
|
|
49 |
|
50 |
DEEPCACHE_INTERVAL = 2
|
51 |
|
52 |
-
TGATE_STEP = 0
|
53 |
-
|
54 |
TOME_RATIO = 0.0
|
|
|
49 |
|
50 |
DEEPCACHE_INTERVAL = 2
|
51 |
|
|
|
|
|
52 |
TOME_RATIO = 0.0
|
generate.py
CHANGED
@@ -25,8 +25,6 @@ from diffusers import (
|
|
25 |
StableDiffusionPipeline,
|
26 |
)
|
27 |
from diffusers.models import AutoencoderKL, AutoencoderTiny
|
28 |
-
from tgate.SD import tgate as tgate_sd
|
29 |
-
from tgate.SD_DeepCache import tgate as tgate_sd_deepcache
|
30 |
from torch._dynamo import OptimizedModule
|
31 |
|
32 |
# some models use the deprecated CLIPFeatureExtractor class (should use CLIPImageProcessor)
|
@@ -77,17 +75,6 @@ class Loader:
|
|
77 |
self.pipe.deepcache.enable()
|
78 |
return self.pipe.deepcache
|
79 |
|
80 |
-
def _load_tgate(self):
|
81 |
-
has_tgate = hasattr(self.pipe, "tgate")
|
82 |
-
has_deepcache = hasattr(self.pipe, "deepcache")
|
83 |
-
|
84 |
-
if not has_tgate:
|
85 |
-
self.pipe.tgate = MethodType(
|
86 |
-
tgate_sd_deepcache if has_deepcache else tgate_sd,
|
87 |
-
self.pipe,
|
88 |
-
)
|
89 |
-
return self.pipe.tgate
|
90 |
-
|
91 |
def _load_vae(self, model_name=None, taesd=False, dtype=None):
|
92 |
vae_type = type(self.pipe.vae)
|
93 |
is_kl = issubclass(vae_type, (AutoencoderKL, OptimizedModule))
|
@@ -172,7 +159,6 @@ class Loader:
|
|
172 |
|
173 |
self._load_vae(model_lower, taesd, dtype)
|
174 |
self._load_deepcache(interval=deepcache_interval)
|
175 |
-
self._load_tgate()
|
176 |
return self.pipe
|
177 |
else:
|
178 |
print(f"Unloading {model_name.lower()}...")
|
@@ -189,13 +175,12 @@ class Loader:
|
|
189 |
|
190 |
print(f"Loading {model_lower} with {'Tiny' if taesd else 'KL'} VAE...")
|
191 |
self.pipe = StableDiffusionPipeline.from_pretrained(**pipe_kwargs).to(self.gpu)
|
192 |
-
self._load_vae(model_lower, taesd, dtype)
|
193 |
-
self._load_deepcache(interval=deepcache_interval)
|
194 |
-
self._load_tgate()
|
195 |
self.pipe.load_textual_inversion(
|
196 |
pretrained_model_name_or_path=list(EMBEDDINGS.keys()),
|
197 |
tokens=list(EMBEDDINGS.values()),
|
198 |
)
|
|
|
|
|
199 |
return self.pipe
|
200 |
|
201 |
|
@@ -262,7 +247,6 @@ def generate(
|
|
262 |
truncate_prompts=False,
|
263 |
increment_seed=True,
|
264 |
deepcache_interval=1,
|
265 |
-
tgate_step=0,
|
266 |
tome_ratio=0,
|
267 |
log: Callable[[str], None] = None,
|
268 |
Error=Exception,
|
@@ -328,17 +312,11 @@ def generate(
|
|
328 |
raise Error("ParsingException: Invalid prompt")
|
329 |
|
330 |
with token_merging(pipe, tome_ratio=tome_ratio):
|
331 |
-
|
332 |
-
gate_step = min(
|
333 |
-
tgate_step if tgate_step > 0 else inference_steps,
|
334 |
-
inference_steps,
|
335 |
-
)
|
336 |
-
result = pipe.tgate(
|
337 |
num_inference_steps=inference_steps,
|
338 |
negative_prompt_embeds=neg_embeds,
|
339 |
guidance_scale=guidance_scale,
|
340 |
prompt_embeds=pos_embeds,
|
341 |
-
gate_step=gate_step,
|
342 |
generator=generator,
|
343 |
height=height,
|
344 |
width=width,
|
|
|
25 |
StableDiffusionPipeline,
|
26 |
)
|
27 |
from diffusers.models import AutoencoderKL, AutoencoderTiny
|
|
|
|
|
28 |
from torch._dynamo import OptimizedModule
|
29 |
|
30 |
# some models use the deprecated CLIPFeatureExtractor class (should use CLIPImageProcessor)
|
|
|
75 |
self.pipe.deepcache.enable()
|
76 |
return self.pipe.deepcache
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
def _load_vae(self, model_name=None, taesd=False, dtype=None):
|
79 |
vae_type = type(self.pipe.vae)
|
80 |
is_kl = issubclass(vae_type, (AutoencoderKL, OptimizedModule))
|
|
|
159 |
|
160 |
self._load_vae(model_lower, taesd, dtype)
|
161 |
self._load_deepcache(interval=deepcache_interval)
|
|
|
162 |
return self.pipe
|
163 |
else:
|
164 |
print(f"Unloading {model_name.lower()}...")
|
|
|
175 |
|
176 |
print(f"Loading {model_lower} with {'Tiny' if taesd else 'KL'} VAE...")
|
177 |
self.pipe = StableDiffusionPipeline.from_pretrained(**pipe_kwargs).to(self.gpu)
|
|
|
|
|
|
|
178 |
self.pipe.load_textual_inversion(
|
179 |
pretrained_model_name_or_path=list(EMBEDDINGS.keys()),
|
180 |
tokens=list(EMBEDDINGS.values()),
|
181 |
)
|
182 |
+
self._load_vae(model_lower, taesd, dtype)
|
183 |
+
self._load_deepcache(interval=deepcache_interval)
|
184 |
return self.pipe
|
185 |
|
186 |
|
|
|
247 |
truncate_prompts=False,
|
248 |
increment_seed=True,
|
249 |
deepcache_interval=1,
|
|
|
250 |
tome_ratio=0,
|
251 |
log: Callable[[str], None] = None,
|
252 |
Error=Exception,
|
|
|
312 |
raise Error("ParsingException: Invalid prompt")
|
313 |
|
314 |
with token_merging(pipe, tome_ratio=tome_ratio):
|
315 |
+
result = pipe(
|
|
|
|
|
|
|
|
|
|
|
316 |
num_inference_steps=inference_steps,
|
317 |
negative_prompt_embeds=neg_embeds,
|
318 |
guidance_scale=guidance_scale,
|
319 |
prompt_embeds=pos_embeds,
|
|
|
320 |
generator=generator,
|
321 |
height=height,
|
322 |
width=width,
|
requirements.txt
CHANGED
@@ -7,7 +7,6 @@ gradio==4.39.0
|
|
7 |
ruff
|
8 |
scipy # for LMS scheduler
|
9 |
spaces
|
10 |
-
tgate==0.1.2
|
11 |
tomesd==0.1.3
|
12 |
torch
|
13 |
torchvision
|
|
|
7 |
ruff
|
8 |
scipy # for LMS scheduler
|
9 |
spaces
|
|
|
10 |
tomesd==0.1.3
|
11 |
torch
|
12 |
torchvision
|
usage.md
CHANGED
@@ -65,10 +65,6 @@ Optionally, the [Karras](https://arxiv.org/abs/2206.00364) noise schedule can be
|
|
65 |
* `3`: balanced
|
66 |
* `4`: more speed
|
67 |
|
68 |
-
#### T-GATE
|
69 |
-
|
70 |
-
[Temporal gating](https://github.com/HaozheLiu-ST/T-GATE) (Zhang et al. 2024) caches self and cross attention computations up to `Step`. Afterwards, attention is no longer computed and the cache is used, resulting in a noticeable speedup.
|
71 |
-
|
72 |
#### ToMe
|
73 |
|
74 |
[Token merging](https://arxiv.org/abs/2303.17604) (Bolya & Hoffman 2023) reduces the number of tokens processed by the model. Set `Ratio` to the desired reduction factor. ToMe's impact is more noticeable on larger images.
|
|
|
65 |
* `3`: balanced
|
66 |
* `4`: more speed
|
67 |
|
|
|
|
|
|
|
|
|
68 |
#### ToMe
|
69 |
|
70 |
[Token merging](https://arxiv.org/abs/2303.17604) (Bolya & Hoffman 2023) reduces the number of tokens processed by the model. Set `Ratio` to the desired reduction factor. ToMe's impact is more noticeable on larger images.
|