import functools import json import os import time from contextlib import contextmanager from typing import Tuple, TypeVar import numpy as np import torch from anyio import Semaphore from diffusers.utils import logging as diffusers_logging from PIL import Image from transformers import logging as transformers_logging from typing_extensions import ParamSpec from .annotators import CannyAnnotator T = TypeVar("T") P = ParamSpec("P") MAX_CONCURRENT_THREADS = 1 MAX_THREADS_GUARD = Semaphore(MAX_CONCURRENT_THREADS) @contextmanager def timer(message="Operation", logger=print): start = time.perf_counter() logger(message) try: yield finally: end = time.perf_counter() logger(f"{message} took {end - start:.2f}s") @functools.lru_cache() def read_json(path: str) -> dict: with open(path, "r", encoding="utf-8") as file: data = json.load(file) return json.dumps(data, indent=4) @functools.lru_cache() def read_file(path: str) -> str: with open(path, "r", encoding="utf-8") as file: return file.read() def disable_progress_bars(): transformers_logging.disable_progress_bar() diffusers_logging.disable_progress_bar() def enable_progress_bars(): # warns if `HF_HUB_DISABLE_PROGRESS_BARS` env var is not None transformers_logging.enable_progress_bar() diffusers_logging.enable_progress_bar() def cuda_collect(): if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.ipc_collect() torch.cuda.reset_peak_memory_stats() torch.cuda.synchronize() def image_to_pil(image: Image.Image): """Converts various image inputs to RGB PIL Image.""" if isinstance(image, str) and os.path.isfile(image): image = Image.open(image) if isinstance(image, np.ndarray): image = Image.fromarray(image) if isinstance(image, Image.Image): return image.convert("RGB") raise ValueError("Invalid image input") def get_valid_image_size( width: int, height: int, step=64, min_size=512, max_size=4096, ): """Get new image dimensions while preserving aspect ratio.""" def round_down(x): return int((x // step) * step) def clamp(x): return max(min_size, min(x, max_size)) aspect_ratio = width / height # try width first if width > height: new_width = round_down(clamp(width)) new_height = round_down(new_width / aspect_ratio) else: new_height = round_down(clamp(height)) new_width = round_down(new_height * aspect_ratio) # if new dimensions are out of bounds, try height if not min_size <= new_width <= max_size: new_width = round_down(clamp(width)) new_height = round_down(new_width / aspect_ratio) if not min_size <= new_height <= max_size: new_height = round_down(clamp(height)) new_width = round_down(new_height * aspect_ratio) return (new_width, new_height) def resize_image( image: Image.Image, size: Tuple[int, int] = None, resampling: Image.Resampling = None, ): """Resize image with proper interpolation and dimension constraints.""" image = image_to_pil(image) if size is None: size = get_valid_image_size(*image.size) if resampling is None: resampling = Image.Resampling.LANCZOS return image.resize(size, resampling) def annotate_image(image: Image.Image, annotator="canny"): """Get the feature map of an image using the specified annotator.""" size = get_valid_image_size(*image.size) image = resize_image(image, size) if annotator.lower() == "canny": canny = CannyAnnotator() return canny(image, size) raise ValueError(f"Invalid annotator: {annotator}")