File size: 8,706 Bytes
2401ce9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Union
@dataclass
class Txt2TxtPreset:
frequency_penalty: float
frequency_penalty_min: float
frequency_penalty_max: float
parameters: Optional[List[str]] = field(default_factory=list)
@dataclass
class Txt2ImgPreset:
# FLUX1.1 has no scale or steps
name: str
guidance_scale: Optional[float] = None
guidance_scale_min: Optional[float] = None
guidance_scale_max: Optional[float] = None
num_inference_steps: Optional[int] = None
num_inference_steps_min: Optional[int] = None
num_inference_steps_max: Optional[int] = None
parameters: Optional[List[str]] = field(default_factory=list)
kwargs: Optional[Dict[str, Union[str, int, float, bool]]] = field(default_factory=dict)
@dataclass
class Txt2TxtPresets:
hugging_face: Txt2TxtPreset
perplexity: Txt2TxtPreset
@dataclass
class Txt2ImgPresets:
# bfl
flux_1_1_pro_bfl: Txt2ImgPreset
flux_dev_bfl: Txt2ImgPreset
flux_pro_bfl: Txt2ImgPreset
# fal
aura_flow: Txt2ImgPreset
flux_1_1_pro_fal: Txt2ImgPreset
flux_dev_fal: Txt2ImgPreset
flux_pro_fal: Txt2ImgPreset
flux_schnell_fal: Txt2ImgPreset
fooocus: Txt2ImgPreset
kolors: Txt2ImgPreset
stable_diffusion_3: Txt2ImgPreset
# hf
flux_dev_hf: Txt2ImgPreset
flux_schnell_hf: Txt2ImgPreset
stable_diffusion_xl: Txt2ImgPreset
# together
flux_schnell_free_together: Txt2ImgPreset
@dataclass
class Preset:
txt2txt: Txt2TxtPresets
txt2img: Txt2ImgPresets
preset = Preset(
txt2txt=Txt2TxtPresets(
# Every service has model and system messages
hugging_face=Txt2TxtPreset(
frequency_penalty=0.0,
frequency_penalty_min=-2.0,
frequency_penalty_max=2.0,
parameters=["max_tokens", "temperature", "frequency_penalty", "seed"],
),
perplexity=Txt2TxtPreset(
frequency_penalty=1.0,
frequency_penalty_min=1.0,
frequency_penalty_max=2.0,
parameters=["max_tokens", "temperature", "frequency_penalty"],
),
),
txt2img=Txt2ImgPresets(
aura_flow=Txt2ImgPreset(
"AuraFlow",
guidance_scale=3.5,
guidance_scale_min=1.0,
guidance_scale_max=10.0,
num_inference_steps=28,
num_inference_steps_min=10,
num_inference_steps_max=50,
parameters=["seed", "num_inference_steps", "guidance_scale", "expand_prompt"],
kwargs={"num_images": 1, "sync_mode": False},
),
flux_1_1_pro_bfl=Txt2ImgPreset(
"FLUX1.1 Pro",
parameters=["seed", "width", "height", "prompt_upsampling"],
kwargs={"safety_tolerance": 6},
),
flux_pro_bfl=Txt2ImgPreset(
"FLUX.1 Pro",
guidance_scale=2.5,
guidance_scale_min=1.5,
guidance_scale_max=5.0,
num_inference_steps=40,
num_inference_steps_min=10,
num_inference_steps_max=50,
parameters=["seed", "width", "height", "steps", "guidance", "prompt_upsampling"],
kwargs={"safety_tolerance": 6, "interval": 1},
),
flux_dev_bfl=Txt2ImgPreset(
"FLUX.1 Dev",
num_inference_steps=28,
num_inference_steps_min=10,
num_inference_steps_max=50,
guidance_scale=3.0,
guidance_scale_min=1.5,
guidance_scale_max=5.0,
parameters=["seed", "width", "height", "steps", "guidance", "prompt_upsampling"],
kwargs={"safety_tolerance": 6},
),
flux_1_1_pro_fal=Txt2ImgPreset(
"FLUX1.1 Pro",
parameters=["seed", "image_size"],
kwargs={
"num_images": 1,
"sync_mode": False,
"safety_tolerance": 6,
"enable_safety_checker": False,
},
),
flux_pro_fal=Txt2ImgPreset(
"FLUX.1 Pro",
guidance_scale=2.5,
guidance_scale_min=1.5,
guidance_scale_max=5.0,
num_inference_steps=40,
num_inference_steps_min=10,
num_inference_steps_max=50,
parameters=["seed", "image_size", "num_inference_steps", "guidance_scale"],
kwargs={"num_images": 1, "sync_mode": False, "safety_tolerance": 6},
),
flux_dev_fal=Txt2ImgPreset(
"FLUX.1 Dev",
num_inference_steps=28,
num_inference_steps_min=10,
num_inference_steps_max=50,
guidance_scale=3.0,
guidance_scale_min=1.5,
guidance_scale_max=5.0,
parameters=["seed", "image_size", "num_inference_steps", "guidance_scale"],
kwargs={"num_images": 1, "sync_mode": False, "safety_tolerance": 6},
),
flux_schnell_fal=Txt2ImgPreset(
"FLUX.1 Schnell",
num_inference_steps=4,
num_inference_steps_min=1,
num_inference_steps_max=12,
parameters=["seed", "image_size", "num_inference_steps"],
kwargs={"num_images": 1, "sync_mode": False, "enable_safety_checker": False},
),
flux_dev_hf=Txt2ImgPreset(
"FLUX.1 Dev",
num_inference_steps=28,
num_inference_steps_min=10,
num_inference_steps_max=50,
guidance_scale=3.0,
guidance_scale_min=1.5,
guidance_scale_max=5.0,
parameters=["width", "height", "guidance_scale", "num_inference_steps"],
kwargs={"max_sequence_length": 512},
),
flux_schnell_hf=Txt2ImgPreset(
"FLUX.1 Schnell",
num_inference_steps=4,
num_inference_steps_min=1,
num_inference_steps_max=12,
parameters=["width", "height", "num_inference_steps"],
kwargs={"guidance_scale": 0.0, "max_sequence_length": 256},
),
flux_schnell_free_together=Txt2ImgPreset(
"FLUX.1 Schnell Free",
num_inference_steps=4,
num_inference_steps_min=1,
num_inference_steps_max=12,
parameters=["model", "seed", "width", "height", "steps"],
kwargs={"n": 1},
),
fooocus=Txt2ImgPreset(
"Fooocus",
guidance_scale=4.0,
guidance_scale_min=1.0,
guidance_scale_max=10.0,
parameters=["seed", "negative_prompt", "aspect_ratio", "guidance_scale"],
kwargs={
"num_images": 1,
"sync_mode": True,
"enable_safety_checker": False,
"output_format": "png",
"sharpness": 2,
"styles": ["Fooocus Enhance", "Fooocus V2", "Fooocus Sharp"],
"performance": "Quality",
},
),
kolors=Txt2ImgPreset(
"Kolors",
guidance_scale=5.0,
guidance_scale_min=1.0,
guidance_scale_max=10.0,
num_inference_steps=50,
num_inference_steps_min=10,
num_inference_steps_max=50,
parameters=["seed", "negative_prompt", "image_size", "guidance_scale", "num_inference_steps"],
kwargs={
"num_images": 1,
"sync_mode": True,
"enable_safety_checker": False,
"scheduler": "EulerDiscreteScheduler",
},
),
stable_diffusion_3=Txt2ImgPreset(
"SD3",
guidance_scale=5.0,
guidance_scale_min=1.0,
guidance_scale_max=10.0,
num_inference_steps=28,
num_inference_steps_min=10,
num_inference_steps_max=50,
parameters=[
"seed",
"negative_prompt",
"image_size",
"guidance_scale",
"num_inference_steps",
"prompt_expansion",
],
kwargs={"num_images": 1, "sync_mode": True, "enable_safety_checker": False},
),
stable_diffusion_xl=Txt2ImgPreset(
"SDXL",
guidance_scale=7.0,
guidance_scale_min=1.0,
guidance_scale_max=10.0,
num_inference_steps=40,
num_inference_steps_min=10,
num_inference_steps_max=50,
parameters=[
"seed",
"negative_prompt",
"width",
"height",
"guidance_scale",
"num_inference_steps",
],
),
),
)
|