adamirus commited on
Commit
5263caf
·
1 Parent(s): c4788d8

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +14 -6
app.py CHANGED
@@ -2,13 +2,13 @@ import torch
2
  import gradio as gr
3
  from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
4
  from diffusers.utils import export_to_video
 
5
 
6
- # Отключение CUDA (GPU)
7
- #torch.device('cuda')
8
 
9
  def generate_video(prompt):
10
  # load pipeline
11
- pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16") #.device
 
12
  pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
13
 
14
  # optimize for GPU memory
@@ -18,9 +18,17 @@ def generate_video(prompt):
18
  # generate
19
  video_frames = pipe(prompt, num_inference_steps=25, num_frames=200).frames
20
 
 
 
 
 
 
 
 
21
  # convert to video
22
- video_path = export_to_video(video_frames)
23
  return video_path
24
 
25
- demo = gr.Interface(fn=generate_video, inputs="text", outputs="file")
26
- demo.launch(share=True)
 
 
2
  import gradio as gr
3
  from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
4
  from diffusers.utils import export_to_video
5
+ import os
6
 
 
 
7
 
8
  def generate_video(prompt):
9
  # load pipeline
10
+ pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16,
11
+ variant="fp16")
12
  pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
13
 
14
  # optimize for GPU memory
 
18
  # generate
19
  video_frames = pipe(prompt, num_inference_steps=25, num_frames=200).frames
20
 
21
+ # get absolute path to current working directory
22
+ current_directory = os.getcwd()
23
+
24
+ # create directory to store video
25
+ video_directory = os.path.join(current_directory, "generated_videos")
26
+ os.makedirs(video_directory, exist_ok=True)
27
+
28
  # convert to video
29
+ video_path = export_to_video(video_frames, os.path.join(video_directory, "generated_video.mp4"))
30
  return video_path
31
 
32
+
33
+ iface = gr.Interface(fn=generate_video, inputs="text", outputs="file")
34
+ iface.launch()