File size: 8,780 Bytes
c9f26e8
 
4f5f090
ff4e3da
 
c9f26e8
 
cb90219
4f5f090
c9f26e8
 
 
 
 
 
 
4f5f090
 
c9f26e8
 
 
 
 
 
 
 
 
 
 
4f5f090
c9f26e8
4f5f090
cb90219
c9f26e8
 
 
 
 
 
4f5f090
c9f26e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f5f090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9f26e8
4f5f090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9f26e8
4f5f090
c9f26e8
4f5f090
ff4e3da
cb90219
 
 
 
 
 
 
 
 
 
ff4e3da
 
 
4f5f090
ff4e3da
 
 
4f5f090
 
ff4e3da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9f26e8
 
 
 
4f5f090
c9f26e8
 
 
 
 
 
 
 
 
ff4e3da
 
 
c9f26e8
 
2591f90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e71f7f1
2591f90
 
4f5f090
2591f90
 
c9f26e8
 
2591f90
 
e71f7f1
2591f90
 
 
ff4e3da
2591f90
ff4e3da
 
 
 
4f5f090
 
 
 
 
 
 
 
2591f90
ff4e3da
 
 
 
4f5f090
ff4e3da
 
 
c9f26e8
 
 
 
 
4f5f090
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import argparse
import asyncio
import gradio as gr
from difflib import Differ
from string import Template
from utils import load_prompt, setup_gemini_client
from configs.responses import SummaryResponses
from google.genai import types

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--ai-studio-api-key", type=str, default=os.getenv("GEMINI_API_KEY"))
    parser.add_argument("--vertexai", action="store_true", default=False)
    parser.add_argument("--vertexai-project", type=str, default="gcp-ml-172005")
    parser.add_argument("--vertexai-location", type=str, default="us-central1")
    parser.add_argument("--model", type=str, default="gemini-2.0-flash", choices=["gemini-1.5-flash", "gemini-2.0-flash", "gemini-2.0-flash-001"])
    parser.add_argument("--seed", type=int, default=2025)
    parser.add_argument("--prompt-tmpl-path", type=str, default="configs/prompts.toml")
    parser.add_argument("--css-path", type=str, default="statics/styles.css")
    args = parser.parse_args()
    return args

def find_attached_file(filename, attached_files):
    for file in attached_files:
        if file['name'] == filename:
            return file
    return None

async def echo(message, history, state, persona):
    attached_file = None
    system_instruction = Template(prompt_tmpl['summarization']['system_prompt']).safe_substitute(persona=persona)
    
    if message['files']:
        path_local = message['files'][0]
        filename = os.path.basename(path_local)

        attached_file = find_attached_file(filename, state["attached_files"])
        if attached_file is None: 
            path_gcp = await client.files.upload(path=path_local)
            state["attached_files"].append({
                "name": filename,
                "path_local": path_local,
                "gcp_entity": path_gcp,
                "path_gcp": path_gcp.name,
                "mime_type=": path_gcp.mime_type,
                "expiration_time": path_gcp.expiration_time,
            })
            attached_file = path_gcp

    user_message = [message['text']]
    if attached_file: user_message.append(attached_file)

    chat_history = state['messages']
    chat_history = chat_history + user_message
    state['messages'] = chat_history

    response_chunks = ""
    model_content_stream = await client.models.generate_content_stream(
    model=args.model, 
    contents=state['messages'], 
    config=types.GenerateContentConfig(
        system_instruction=system_instruction, seed=args.seed
    ),
)
    async for chunk in model_content_stream:
        response_chunks += chunk.text
        # when model generates too fast, Gradio does not respond that in real-time.
        await asyncio.sleep(0.1)
        yield (
            response_chunks, 
            state, 
            state['summary_diff_history'][-1] if len(state['summary_diff_history']) > 1 else "",
            state['summary_history'][-1] if len(state['summary_history']) > 1 else "",
            gr.Slider(
                visible=False if len(state['summary_history']) <= 1 else True, 
                interactive=False if len(state['summary_history']) <= 1 else True, 
            ),
        )        
    
    # make summary
    response = await client.models.generate_content(
        model=args.model,
        contents=[
            Template(
                prompt_tmpl['summarization']['prompt']
            ).safe_substitute(
                previous_summary=state['summary'], 
                latest_conversation=str({"user": message['text'], "assistant": response_chunks})
            )
        ],
        config=types.GenerateContentConfig(
            system_instruction=system_instruction, 
            seed=args.seed,
            response_mime_type='application/json', 
            response_schema=SummaryResponses
        )
    )

    prev_summary = state['summary_history'][-1] if len(state['summary_history']) >= 1 else ""

    state['summary'] = (
        response.parsed.summary 
        if getattr(response.parsed, "summary", None) is not None 
        else response.text
    )
    state['summary_history'].append(
        response.parsed.summary 
        if getattr(response.parsed, "summary", None) is not None 
        else response.text
    )
    state['summary_diff_history'].append(
        [
            (token[2:], token[0] if token[0] != " " else None)
            for token in Differ().compare(prev_summary, state['summary'])
        ]
    )

    yield (
        response_chunks, 
        state, 
        state['summary_diff_history'][-1],
        state['summary_history'][-1],
        gr.Slider(
            maximum=len(state['summary_history']),
            value=len(state['summary_history']),
            visible=False if len(state['summary_history']) == 1 else True, interactive=True
        ),
    )

def change_view_toggle(view_toggle):
    if view_toggle == "Diff":
        return (
            gr.HighlightedText(visible=True),
            gr.Markdown(visible=False)
        )
    else:
        return (
            gr.HighlightedText(visible=False),
            gr.Markdown(visible=True)
        )        

def navigate_to_summary(summary_num, state):
    return (
        state['summary_diff_history'][summary_num-1],
        state['summary_history'][summary_num-1]
    )

def main(args):
    style_css = open(args.css_path, "r").read()

    global client, prompt_tmpl, system_instruction
    client = setup_gemini_client(args)
    prompt_tmpl = load_prompt(args)
    
    ## Gradio Blocks
    with gr.Blocks(css=style_css) as demo:
        # State per session
        state = gr.State({
            "messages": [],
            "attached_files": [],
            "summary": "",
            "summary_history": [],
            "summary_diff_history": []
        })

        with gr.Column():
            gr.Markdown("# Adaptive Summarization")
            gr.Markdown("AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.")

        with gr.Column():
            with gr.Accordion("Adaptively Summarized Conversation", elem_id="adaptive-summary-accordion", open=False):
                with gr.Row(elem_id="view-toggle-btn-container"):
                    view_toggle_btn = gr.Radio(
                        choices=["Diff", "Markdown"],
                        value="Markdown",
                        interactive=True,
                        elem_id="view-toggle-btn"
                    )

                summary_diff = gr.HighlightedText(
                    label="Summary so far",
                    # value="No summary yet. As you chat with the assistant, the summary will be updated automatically.",
                    combine_adjacent=True,
                    show_legend=True,
                    color_map={"-": "red", "+": "green"},
                    elem_classes=["summary-window"],
                    visible=False
                )

                summary_md = gr.Markdown(
                    label="Summary so far",
                    value="No summary yet. As you chat with the assistant, the summary will be updated automatically.",
                    elem_classes=["summary-window"],
                    visible=True
                )

                summary_num = gr.Slider(label="summary history", minimum=1, maximum=1, step=1, show_reset_button=False, visible=False)

            view_toggle_btn.change(change_view_toggle, inputs=[view_toggle_btn], outputs=[summary_diff, summary_md])
            summary_num.release(navigate_to_summary, inputs=[summary_num, state], outputs=[summary_diff, summary_md])
        
        with gr.Column("persona-dropdown-container", elem_id="persona-dropdown-container"):
            persona = gr.Dropdown(
                ["expert", "novice", "regular practitioner", "high schooler"], 
                label="Summary Persona", 
                info="Control the tonality of the conversation.",
                min_width="auto",
            )        

        with gr.Column("chat-window", elem_id="chat-window"):
            gr.ChatInterface(
                multimodal=True,
                type="messages", 
                fn=echo, 
                additional_inputs=[state, persona],
                additional_outputs=[state, summary_diff, summary_md, summary_num],
            )

    return demo

if __name__ == "__main__":
    args = parse_args()
    demo = main(args)
    demo.launch()