import gradio as gr from PIL import Image import numpy as np from tensorflow.keras.preprocessing import image as keras_image from tensorflow.keras.applications.resnet50 import preprocess_input from tensorflow.keras.models import load_model # Load your trained model model = load_model('/home/user/app/mein_modell.h5') def predict_pokemon(img): img = Image.fromarray(img.astype('uint8'), 'RGB') # Ensure the image is in RGB img = img.resize((224, 224)) # Resize the image properly using PIL img_array = keras_image.img_to_array(img) # Convert the image to an array img_array = np.expand_dims(img_array, axis=0) # Expand dimensions to fit model input img_array = preprocess_input(img_array) # Preprocess the input as expected by ResNet50 prediction = model.predict(img_array) # Predict using the model classes = ['Arbok', 'Slowpoke', 'Zapdos' ] # Specific Pokémon names return {classes[i]: float(prediction[0][i]) for i in range(3)} # Return the prediction # Define Gradio interface interface = gr.Interface(fn=predict_pokemon, inputs="image", # Simplified input type outputs="label", # Simplified output type title="Pokémon Classifier", description="Upload an image of a Pokémon and the classifier will predict its species.") # Launch the interface interface.launch()